In this article, we present Bio-GO-SHIP, a new ocean observing program that will incorporate sustained and consistent global biological ocean observations into the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP). The goal of Bio-GO-SHIP is to produce systematic and consistent biological observations during global ocean repeat hydrographic surveys, with a particular focus on the planktonic ecosystem. Ocean plankton are an essential component of the earth climate system, form the base of the oceanic food web and thereby play an important role in influencing food security and contributing to the Blue Economy. Despite its importance, ocean biology is largely under-sampled in time and space compared to physical and chemical properties. This lack of information hampers our ability to understand the role of plankton in regulating biogeochemical processes and fueling higher trophic levels, now and in future ocean conditions. Traditionally, many of the methods used to quantify biological and ecosystem essential ocean variables (EOVs), measures that provide valuable information on the ecosystem, have been expensive and labor- and time-intensive, limiting their large-scale deployment. In the last two decades, new technologies have been developed and matured, making it possible to greatly expand our biological ocean observing capacity. These technologies, including cell imaging, bio-optical sensors and 'omic tools, can be combined to provide overlapping measurements of key biological and ecosystem EOVs. New developments in data management and open sharing can facilitate meaningful synthesis and integration with concurrent physical and chemical data. Here we outline how Bio-GO-SHIP leverages these technological advances to greatly expand our knowledge and understanding of the constituents and function of the global ocean plankton ecosystem.
more »
« less
GO-SHIP Easy Ocean: Gridded ship-based hydrographic section of temperature, salinity, and dissolved oxygen
Abstract Despite technological advances over the last several decades, ship-based hydrography remains the only method for obtaining high-quality, high spatial and vertical resolution measurements of physical, chemical, and biological parameters over the full water column essential for physical, chemical, and biological oceanography and climate science. The Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP) coordinates a network of globally sustained hydrographic sections. These data provide a unique data set that spans four decades, comprised of more than 40 cross-ocean transects. The section data are, however, difficult to use owing to inhomogeneous format. The purpose of this new temperature, salinity, and dissolved oxygen data product is to combine, reformat and grid these data measured by Conductivity-Temperature-Depth-Oxygen (CTDO) profilers in order to facilitate their use by a wider audience. The product is machine readable and readily accessible by many existing visualisation and analysis software packages. The data processing can be repeated with modifications to suit various applications such as analysis of deep ocean, validation of numerical simulation, and calibration of autonomous platforms.
more »
« less
- Award ID(s):
- 1829814
- PAR ID:
- 10364268
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Data
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2052-4463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Detailed descriptions of microbial communities have lagged far behind physical and chemical measurements in the marine environment. Here, we present 971 globally distributed surface ocean metagenomes collected at high spatio-temporal resolution. Our low-cost metagenomic sequencing protocol produced 3.65 terabases of data, where the median number of base pairs per sample was 3.41 billion. The median distance between sampling stations was 26 km. The metagenomic libraries described here were collected as a part of a biological initiative for the Global Ocean Ship-based Hydrographic Investigations Program, or “Bio-GO-SHIP.” One of the primary aims of GO-SHIP is to produce high spatial and vertical resolution measurements of key state variables to directly quantify climate change impacts on ocean environments. By similarly collecting marine metagenomes at high spatiotemporal resolution, we expect that this dataset will help answer questions about the link between microbial communities and biogeochemical fluxes in a changing ocean.more » « less
-
Abstract. The presented pilot for the Synthesis Product for Ocean Time Series (SPOTS) includes data from 12 fixed ship-based time-series programs. The related stations represent unique open-ocean and coastal marine environments within the Atlantic Ocean, Pacific Ocean, Mediterranean Sea, Nordic Seas, and Caribbean Sea. The focus of the pilot has been placed on biogeochemical essential ocean variables: dissolved oxygen, dissolved inorganic nutrients, inorganic carbon (pH, total alkalinity, dissolved inorganic carbon, and partial pressure of CO2), particulate matter, and dissolved organic carbon. The time series used include a variety of temporal resolutions (monthly, seasonal, or irregular), time ranges (10–36 years), and bottom depths (80–6000 m), with the oldest samples dating back to 1983 and the most recent one corresponding to 2021. Besides having been harmonized into the same format (semantics, ancillary data, units), the data were subjected to a qualitative assessment in which the applied methods were evaluated and categorized. The most recently applied methods of the time-series programs usually follow the recommendations outlined by the Bermuda Time Series Workshop report (Lorenzoni and Benway, 2013), which is used as the main reference for “method recommendations by prevalent initiatives in the field”. However, measurements of dissolved oxygen and pH, in particular, still show room for improvement. Additional data quality descriptors include precision and accuracy estimates, indicators for data variability, and offsets compared to a reference and widely recognized data product for the global ocean: the GLobal Ocean Data Analysis Project (GLODAP). Generally, these descriptors indicate a high level of continuity in measurement quality within time-series programs and a good consistency with the GLODAP data product, even though robust comparisons to the latter are limited. The data are available as (i) a merged comma-separated file that is compliant with the World Ocean Circulation Experiment (WOCE) exchange format and (ii) a format dependent on user queries via the Environmental Research Division's Data Access Program (ERDDAP) server of the Global Ocean Observing System (GOOS). The pilot increases the data utility, findability, accessibility, interoperability, and reusability following the FAIR philosophy, enhancing the readiness of biogeochemical time series. It facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations and forms the basis for a sustained time-series living data product, SPOTS, complementing relevant products for the global interior ocean carbon data (GLobal Ocean Data Analysis Project), global surface ocean carbon data (Surface Ocean CO2 Atlas; SOCAT), and global interior and surface methane and nitrous oxide data (MarinE MethanE and NiTrous Oxide product). Aside from the actual data compilation, the pilot project produced suggestions for reporting metadata, implementing quality control measures, and making estimations about uncertainty. These recommendations aim to encourage the community to adopt more consistent and uniform practices for analysis and reporting and to update these practices regularly. The detailed recommendations, links to the original time-series programs, the original data, their documentation, and related efforts are available on the SPOTS website. This site also provides access to the data product (DOI: https://doi.org/10.26008/1912/bco-dmo.896862.2, Lange et al., 2024) and ancillary data.more » « less
-
The hydrographic sampling performed by The NSF Ocean Observatories Initiative Coastal and Global Scale Nodes(OOI CGSN) as part of each Array turn represents a significant collection of valuable physical, chemical, and biological information. In addition to the CTD, collected hydrographic data include discrete oxygen, salinity, nutrient (nitrate, nitrite, silicate, phosphate, ammonium), chlorophyll, and carbon system measurements. These data serve several important functions. First, they are necessary for the calibration and evaluation of the moored instrumentation at each Array. Furthermore, the annual (Global) or biannual (Coastal) collection of data at the same locations provides a unique timeseries of a large set of water properties following established community standards and methods, independent of its association with the OOI moorings. The analysis of collected water samples for the parameters listed above are performed by a number of outside labs on behalf of OOI-CGSN. Consequently, the water sampling data for a given cruise is distributed among a number of different files. The Discrete Sampling Summary integrates the related CTD, metadata, and discrete water sample data into a single file. Additionally, it synthesizes qualitative and quantitative information about the quality of a measurement into data quality flags for each associated parameter which follow WOCE-standards. The final product is the Discrete Sampling Summary spreadsheet which contains the metadata, CTD data, and discrete water sample data into a single spreadsheet with data quality flags. This dataset includes hydrographic data from the Global Irminger Sea Array located in the North Atlantic to the southeast of Greenland.This region experiences high winds and large surface waves, strong atmosphere-ocean exchanges of energy and gases, carbon dioxide sequestration, high biological productivity, and an important fishery. It is one of the few places on Earth with deep-water formation that feeds the large-scale thermohaline circulation.more » « less
-
The Davis Strait observing system was established in 2004 to advance understanding of the role of Arctic – sub-Arctic interactions in the climate system by collecting sustained measurements of physical, chemical and biological variability at one of the primary gateways that connect the Arctic and subpolar oceans. Efforts began as a collaboration between researchers at the University of Washington’s Applied Physics Laboratory and the Canadian Department of Fisheries and Ocean’s Bedford Institute of Oceanography, but has grown to include researchers from the Greenland Institute of Natural Resources, Greenland Climate Institute, Danish Technological University, University of Alberta and University of Colorado, Boulder. The project is a component of the NSF Arctic Observing and Atlantic Meridional Overturning Networks, and the international Arctic-Subarctic Ocean Flux (ASOF) program, Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP), Global Ocean Acidification Observing Network (GOA-ON), Arctic Monitoring Assessment Programme (AMAP) and OceanSITES system. A mooring array spanning the entire Davis Strait has been in place nearly continuously since September 2004 as part of the Davis Strait observing system, collecting year-round measurements of temperature, salinity and velocity extending to the sea surface/ice-ocean interface. The mooring typically included 14 moorings, 4 on each shelf and 6 in the center of the strait, that are recovered and data offloaded each autumn. Exact mooring location, instrumentation, and deployment duration varied slightly over time. This dataset consists of Level 2 data from the Davis Strait mooring array. Each file contains data from a single sensor (e.g., MicroCAT temperature and salinity measurements or ADCP velocity measurements) at one mooring site collected during a single deployment (typically one year long). Files also include quality control flags. More details about the project can be found at https://iop.apl.washington.edu/project.php?id=davis.more » « less
An official website of the United States government
