The Davis Strait observing system was established in 2004 to advance understanding of the role of Arctic – sub-Arctic interactions in the climate system by collecting sustained measurements of physical, chemical and biological variability at one of the primary gateways that connect the Arctic and subpolar oceans. Efforts began as a collaboration between researchers at the University of Washington’s Applied Physics Laboratory and the Canadian Department of Fisheries and Ocean’s Bedford Institute of Oceanography, but has grown to include researchers from the Greenland Institute of Natural Resources, Greenland Climate Institute, Danish Technological University, University of Alberta and University of Colorado, Boulder. The project is a component of the NSF Arctic Observing and Atlantic Meridional Overturning Networks, and the international Arctic-Subarctic Ocean Flux (ASOF) program, Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP), Global Ocean Acidification Observing Network (GOA-ON), Arctic Monitoring Assessment Programme (AMAP) and OceanSITES system. Seaglider observations of temperature and salinity extending from the surface to a maximum of 1000 meter (m) depth were collected in Davis Strait from 2005-2014. Seagliders made repeat transects across Davis Strait between waypoints near 66°45' North (N), 60°30' West (W) and 67°N, 56°30' W (though these waypoints and the pathway of the gliders between the waypoints varied). Acoustic navigation enabled year-round data collection. This dataset contains 15 files, each of which contains Level 3 data from one Seaglider deployment in Davis Strait. Deployments lasted from 11 to 174 days and had a median duration of 83 days. Files contain several temperature and salinity products: data not interpolated or despiked; data despiked and interpolated to a common depth/time grid; and low-pass filtered data. Files also include quality control (QC) flags. Each file also contains depth-averaged current vectors from the Seaglider flight model and surface current vectors estimated from the Seaglider's drift track. Data files are named as follows: sg<seaglider number>_DavisStrait_<deployment data in MmmYY format>_level3.nc Level 2 files containing individual dive data are available by contacting the dataset creator. More details about the project can be found at https://iop.apl.washington.edu/project.php?id=davis.
more »
« less
Davis Strait hydrographic mooring Level 2 data: temperature, salinity, and velocity measurements from the Davis Strait Observing System moorings, 2004 to 2022
The Davis Strait observing system was established in 2004 to advance understanding of the role of Arctic – sub-Arctic interactions in the climate system by collecting sustained measurements of physical, chemical and biological variability at one of the primary gateways that connect the Arctic and subpolar oceans. Efforts began as a collaboration between researchers at the University of Washington’s Applied Physics Laboratory and the Canadian Department of Fisheries and Ocean’s Bedford Institute of Oceanography, but has grown to include researchers from the Greenland Institute of Natural Resources, Greenland Climate Institute, Danish Technological University, University of Alberta and University of Colorado, Boulder. The project is a component of the NSF Arctic Observing and Atlantic Meridional Overturning Networks, and the international Arctic-Subarctic Ocean Flux (ASOF) program, Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP), Global Ocean Acidification Observing Network (GOA-ON), Arctic Monitoring Assessment Programme (AMAP) and OceanSITES system. A mooring array spanning the entire Davis Strait has been in place nearly continuously since September 2004 as part of the Davis Strait observing system, collecting year-round measurements of temperature, salinity and velocity extending to the sea surface/ice-ocean interface. The mooring typically included 14 moorings, 4 on each shelf and 6 in the center of the strait, that are recovered and data offloaded each autumn. Exact mooring location, instrumentation, and deployment duration varied slightly over time. This dataset consists of Level 2 data from the Davis Strait mooring array. Each file contains data from a single sensor (e.g., MicroCAT temperature and salinity measurements or ADCP velocity measurements) at one mooring site collected during a single deployment (typically one year long). Files also include quality control flags. More details about the project can be found at https://iop.apl.washington.edu/project.php?id=davis.
more »
« less
- PAR ID:
- 10530878
- Publisher / Repository:
- NSF Arctic Data Center
- Date Published:
- Subject(s) / Keyword(s):
- netCDF-4 Water-based Platforms > Buoys > Moored > Moorings In Situ/Laboratory Instruments > Profilers/Sounders > Acoustic Sounders > ADCP In Situ/Laboratory Instruments > Profilers/Sounders > CTD Arctic Ocean Davis Strait
- Format(s):
- Medium: X Other: text/xml
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sixteen years of moored observations from the core of the Denmark Strait Overflow (DSO) on the Greenland slope in the Irminger Basin are used to examine monthly to seasonal hydrographic signals. Our analysis reveals the presence of an annual salinity cycle, with freshening in the first half of the year and an increase in salinity in the second half. The magnitude of freshening exceeds 0.04 in 1999, 2004, 2005 and 2014. There is no evidence of this signal upstream in the deepest part of the Denmark Strait Sill, which is fed exclusively by the North Icelandic Jet. Instead, we argue that the signal originates from a lighter source of DSO – either the East Greenland Current or the Irminger Current. Results from a case study in 2011-12 indicate that the East Greenland Current is the more likely origin. Specifically, we show the propagation of two freshening signals from the East Greenland Current 200 km north of Denmark Strait to the core of the DSO at the downstream mooring array (700km downstream), with a transit time of 10 weeks. Previous research has linked remote wind forcing (at Denmark Strait and to the north) with DSO salinity in the Irminger Basin. Here, we use ERA-5 reanalysis output in tandem with the full 16 years of mooring observations – a longer time frame than any previous study – to determine the nature of this relationship. A correlation analysis between a variety of atmospheric forcing metrics and our oceanographic time series are presented, and the implications for the structure and stability of the deep overflow are discussed.more » « less
-
Baffin Bay exports Arctic Water to the North Atlantic while receiving northward flowing Atlantic Water. Warm Atlantic Water has impacted the retreat of tidewater glaciers draining the Greenland Ice Sheet. Periods of enhanced Atlantic Water transport into Baffin Bay have been observed, but the oceanic processes are still not fully explained. At the end of 2010 the net transport at Davis Strait, the southern gateway to Baffin Bay, reversed from southward to northward for a month, leading to significant northward oceanic heat transport into Baffin Bay. This was associated with an extreme high in the Greenland Blocking Index and a stormtrack path that shifted away from Baffin Bay. Thus fewer cyclones in the Irminger Sea resulted in less frequent northerly winds along the western coast of Greenland, allowing anomalous northward penetration of warm waters, reversing the volume and heat transport at Davis Strait.more » « less
-
Doi, Hideyuki (Ed.)A large volume of freshwater is incorporated in the relatively fresh (salinity ~32–33) Pacific Ocean waters that are transported north through the Bering Strait relative to deep Atlantic salinity in the Arctic Ocean (salinity ~34.8). These freshened waters help maintain the halocline that separates cold Arctic surface waters from warmer Arctic Ocean waters at depth. The stable oxygen isotope composition of the Bering Sea contribution to the upper Arctic Ocean halocline was established as early as the late 1980’s as having a δ 18 O V - SMOW value of approximately -1.1‰. More recent data indicates a shift to an isotopic composition that is more depleted in 18 O (mean δ 18 O value ~-1.5‰). This shift is supported by a data synthesis of >1400 water samples (salinity from 32.5 to 33.5) from the northern Bering and Chukchi seas, from the years 1987–2020, which show significant year-to-year, seasonal and regional variability. This change in the oxygen isotope composition of water in the upper halocline is consistent with observations of added freshwater in the Canada Basin, and mooring-based estimates of increased freshwater inflows through Bering Strait. Here, we use this isotopic time-series as an independent means of estimating freshwater flux changes through the Bering Strait. We employed a simple end-member mixing model that requires that the volume of freshwater (including runoff and other meteoric water, but not sea ice melt) flowing through Bering Strait has increased by ~40% over the past two decades to account for a change in the isotopic composition of the 33.1 salinity water from a δ 18 O value of approximately -1.1‰ to a mean of -1.5‰. This freshwater flux change is comparable with independent published measurements made from mooring arrays in the Bering Strait (freshwater fluxes rising from 2000–2500 km 3 in 2001 to 3000–3500 km 3 in 2011).more » « less
-
The North Icelandic Jet (NIJ) is an important source of dense water to the overflow plume passing through Denmark Strait. The properties, structure, and transport of the NIJ are investigated for the first time along its entire pathway following the continental slope north of Iceland, using 13 hydrographic/velocity surveys of high spatial resolution conducted between 2004 and 2018. The comprehensive dataset reveals that the current originates northeast of Iceland and increases in volume transport by roughly 0.4 Sv (1 Sv ≡ 10 6 m 3 s −1 ) per 100 km until 300 km upstream of Denmark Strait, at which point the highest transport is reached. The bulk of the NIJ transport is confined to a small area in Θ– S space centered near −0.29° ± 0.16°C in Conservative Temperature and 35.075 ± 0.006 g kg −1 in Absolute Salinity. While the hydrographic properties of this transport mode are not significantly modified along the NIJ’s pathway, the transport estimates vary considerably between and within the surveys. Neither a clear seasonal signal nor a consistent link to atmospheric forcing was found, but barotropic and/or baroclinic instability is likely active in the current. The NIJ displays a double-core structure in roughly 50% of the occupations, with the two cores centered at the 600- and 800-m isobaths, respectively. The transport of overflow water 300 km upstream of Denmark Strait exceeds 1.8 ± 0.3 Sv, which is substantially larger than estimates from a year-long mooring array and hydrographic/velocity surveys closer to the strait, where the NIJ merges with the separated East Greenland Current. This implies a more substantial contribution of the NIJ to the Denmark Strait overflow plume than previously envisaged.more » « less
An official website of the United States government
