skip to main content

Title: Siloxyl radical initiated HCN polymerization: computation of N-heterocycles formation and surface passivation

In this work, by means of quantum chemistry (Density Functional Theory (DFT), PW6B95/def2-TZVPP; DLPNO-CCSD(T)/CBS), HCN polymerization [(HCN)1 − 4] initiated and catalysed by a siloxyl radical (Si-O•) on a model silica surface is analysed. Linear HCN polymers (pHCN) are obtained by a radical initiated mechanism at a SiO• site and are characterized by a -(HC-N)- skeleton due to radical localization on the terminal N atom and radical attack on the C centre. NC heterocycles are formed by cyclization of the linear SiO-(HCN)3 − 4 and are always thermodynamically preferred over their linear counterparts, acting as thermodynamic sinks. Of particular interest to the astrochemistry community is the formation of the N-heterocycle 1,3,5-triazine that can be released into the gas phase at relatively low T (ΔG† = 23.3 kcal/mol). Full hydrogenation of SiO-(HCN•) follows two reaction channels with products: (a) SiO-CH3 + •NH2 or (b) amino-methanol + Si•, though characterized by slow kinetics. Nucleophilic addition of H2O to the electron-rich SiO-(HCN•) shows an unfavourable thermodynamics as well as a high-activation energy. The cleavage of the linear (HCN)1−4 from the SiO• site also shows a high thermodynamic energy penalty (ΔG≥82.0 kcal/mol). As a consequence, the silicate surface will be passivated by a chemically active ‘pHCN brush’ modifying the surface physico-chemical properties. The prospect of more » surface-catalysed HCN polymers exhibiting a high degree of chemical reactivity and proposed avenues for the formation of 1,3,5-triazine and amino-methanol opens exciting new chemical pathways to Complex Organic Matter formation in astrochemistry.

« less
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 1629-1638
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Heterogeneous phase astrochemistry plays an important role in the synthesis of complex organic matter (COM) as found on comets and rocky body surfaces like asteroids, planetoids, moons and planets. The proposed catalytic model is based on two assumptions: (a) siliceous rocks in both crystalline or amorphous states show surface-exposed defective centers such as siloxyl (Si-O•) radicals; (b) the second phase is represented by gas phase CO molecules, an abundant C 1 building block found in space. By means of quantum chemistry; (DFT, PW6B95/def2-TZVPP); the surface of a siliceous rock in presence of CO is modeled by a simple POSS (polyhedral silsesquioxane) where a siloxyl (Si-O•) radical is present. Four CO molecules have been consecutively added to the Si-O• radical and to the nascent polymeric CO (pCO) chain. The first CO insertion shows no activation free energy with ΔG 200 K = −21.7 kcal/mol forming the SiO-CO• radical. The second and third CO insertions show Δ G 200 K ‡ ≤ 10.5 kcal/mol. Ring closure of the SiO-CO-CO• (oxalic anhydride) moiety as well as of the SiO-CO-CO-CO• system (di-cheto form of oxetane) are thermodynamically disfavored. The last CO insertion shows no free energy of activation resulting in the stable five membermore »pCO ring, precursor to 1,4-epoxy-1,2,3-butanone. Hydrogenation reactions of the pCO have been considered on the SiO oxygen or on the carbons and oxygens of the pCO chains. The formation of the reactive aldehyde SiO-CHO on the siliceous surface is possible. In principle, the complete hydrogenation of the (CO) 1−4 series results in the formation of methanol and polyols. Furthermore, all the SiO-pCO intermediates and the lactone 1,4-epoxy-1,2,3-butanone product in its radical form can be important building blocks in further polymerization reactions and/or open ring reactions with H (aldehydes, polyols) or CN (chetonitriles), resulting in highly reactive multi-functional compounds contributing to COM synthesis.« less
  2. Umbrella-sampling density functional theory molecular dynamics (DFT-MD) has been employed to study the full catalytic cycle of the allylic oxidation of cyclohexene using a Cu(II) 7-amino-6-((2- hydroxybenzylidene)amino)quinoxalin-2-ol complex in acetonitrile to create cyclohexenone and H2O as products. After the initial H-atom abstraction step, two different reaction pathways have been identified that are distinguished by the participation of alkyl hydroperoxide (referred to as the “open” cycle) versus the methanol side-product (referred to as the “closed” cycle) within the catalyst recovery process. Importantly, both pathways involve dehydrogenation and re-hydrogenation of the -NH2 group bound to the Cu-site - a feature that is revealed from the ensemble sampling of configurations of the reactive species that are stabilized within the explicit solvent environment of the simulation. Estimation of the energy span from the experimental turnover frequency yields an approximate value of 22.7 kcal/mol at 350 K. Whereas the closed cycle value is predicted to be 26.2 kcal/mol, the open cycle value at 16.5 kcal/mol. Both pathways are further consistent with the equilibrium between Cu(II) and Cu(III) than what has previously been observed. In comparison to prior static DFT calculations, the ensemble of of both solute and solvent configurations has helped to reveal a breadthmore »of processes that underpin the full catalytic cycle yielding a more comprehensive understanding of the importance of radical reactions and catalysis recovery.« less
  3. By varying the halogen-bond-donor molecule, 11 new halogen-bonding cocrystals involving thiourea or 1,3-dimethylthiourea were obtained, namely, 1,3-dimethylthiourea–1,2-diiodo-3,4,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S, 1 , thiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·CH 4 N 2 S, 2 , 1,3-dimethylthiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S, 3 , 1,3-dimethylthiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene–methanol (1/1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S·CH 4 O, 4 , 1,3-dimethylthiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene–ethanol (1/1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S·C 2 H 6 O, 5 , 1,3-dimethylthiourea–1,4-diiodo-2,3,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S, 6 , 1,3-dimethylthiourea–1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 3 H 8 N 2 S, 7 , 1,3-dimethylthiourea–1,1,2,2-tetraiodoethene (1/1), C 6 H 16 N 4 S 2 ·C 2 I 4 , 8 , [(dimethylamino)methylidene](1,2,2-triiodoethenyl)sulfonium iodide–1,1,2,2-tetraiodoethene–acetone (1/1/1), C 5 H 8 I 3 N 2 S + ·I − ·C 3 H 6 O·C 2 I 4 , 9 , 2-amino-4-methyl-1,3-thiazol-3-ium iodide–1,1,2,2-tetraiodoethene (2/3), 2C 4 H 7 N 2 S + ·2I − ·3C 2 I 4 ,more »10 , and 4,4-dimethyl-4 H -1,3,5-thiadiazine-3,5-diium diiodide–1,1,2,2-tetraiodoethene (2/3), 2C 5 H 12 N 4 S 2+ ·4I − ·3C 2 I 4 , 11 . When utilizing the common halogen-bond-donor molecules 1,2-, 1,3-, and 1,4-diiodotetrafluorobenzene, as well as 1,3,5-trifluoro-2,4,6-triiodobenzene, bifurcated I...S...I interactions were observed, resulting in the formation of isolated rings, chains, and sheets. Tetraiodoethylene (TIE) provided I...S...I cocrystals as well, but further yielded a sulfonium-containing product through the reaction of the S atom with TIE. This particular sulfonium motif is the first of its kind to be structurally characterized, and is stabilized in the solid state through a three-dimensional I...I halogen-bonding network. Thiourea reacted with acetone in the presence of TIE to provide two novel heterocyclic products, again stabilized in the solid state through I...I halogen bonding.« less
  4. Abstract

    Aluminum and silicon are present in large quantities in the interstellar medium, making the triatomic species consisting of both elements intriguing with regard to the foundations of astrochemistry. Spectroscopic parameters have been calculated via high-level ab initio methods to assist with laboratory and observational detection of [Al, O, Si]x(x= 0,+1). All [Al, O, Si]x(x= 0,+1) isomers exist in the linear geometry, with linear AlOSi (X2Π) and linear AlOSi+(X1Δ) being the most stable neutral and cationic species, respectively. Formation of the neutral species most likely occurs via reaction of AlO/SiO on an Si/Al dust grain surface, respectively. The cation molecules may form via ion–neutral reaction or as a consequence of photoionization. The rotational frequencies of linear AlOSi (X2Π) have been calculated using vibrationally corrected rotational constants and centrifugal distortion to lead experimental and observational radio detection. The rotational frequencies are discussed for three temperatures indicative of various astronomical environments: the central circumstellar envelope (CSE) (100 K), outer CSE (30 K), and the interstellar medium (3 K). At 100 K, the lines originating fromJ′ > 30 are the best candidates for detection via ground-based telescope. Anharmonic vibrational analysis revealed various Fermi resonances that may complicate the vibrational spectrum of linear AlOSimore »(X2Π). Finally, electronic spectroscopy may be the best means for laboratory detection of linear AlOSi (X2Π), due to the presence of two overlapping electronic transitions with large oscillator strengths occurring at approximately 250 nm.

    « less
  5. The formation and reactivities of [Cu–O–M] 2+ species (M = Ti–Cu, Zr–Mo and Ru–Ag) in metal-exchanged zeolites, as well as stabilities of these species towards autoreduction by O 2 elimination are investigated with density functional theory. These species were investigated in zeolite mordenite in search of insights into active site formation mechanisms, the relationship between stability and reactivity as well as discovery of heterometallic species useful for isothermal methane-to-methanol conversion (MMC). Several [Cu–O–M] 2+ species (M = Ti–Cr and Zr–Mo) are substantially more stable than [Cu 2 O] 2+ . Other [Cu–O–M] 2+ species, (M = Mn–Ni and Ru–Ag) have similar formation energies to [Cu 2 O] 2+ , to within ±10 kcal mol −1 . Interestingly, only [Cu–O–Ag] 2+ is more active for methane activation than [Cu 2 O] 2+ . [Cu–O–Ag] 2+ is however more susceptible to O 2 elimination. By considering the formation energies, autoreduction, cost and activity towards the methane C–H bond, we can only conclude that [Cu 2 O] 2+ is best suited for MMC. Formation of [Cu 2 O] 2+ is initiated by proton transfer from aquo ligands to the framework and proceeds mostly via dehydration steps. Its μ-oxo bridge is formed via water-assistedmore »condensation of two hydroxo groups. To evaluate the relationship between [Cu 2 O] 2+ and other active sites, we also examined the formation energies of other species. The formation energies follow the trend: isolated [Cu–OH] + < paired [Cu–OH] + < [Cu 2 O] 2+ < [Cu 3 O 3 ] 2+ . Inclusion of Gibbs free-energy corrections indicates activation temperatures of 257, 307 and 327 and 331 °C for isolated [Cu–OH] + , paired [Cu–OH] + , [Cu 2 O] 2+ and [Cu 3 O 3 ] 2+ , respectively. The provocative nature of the lower-than-expected activation temperature for isolated [Cu–OH] + species is discussed.« less