skip to main content


Title: Thermodynamic stabilization of crystalline silicon carbide polymer‐derived ceramic fibers
Abstract

Three crystalline SiC fibers were studied: Tyranno, Hi‐Nicalon, and Sylramic. Thermodynamic stability of the SiC fibers was determined by high temperature oxide melt solution calorimetry. Results shed light on the thermodynamic penalty or benefit associated with microstructural modification of the ceramic fibers, and how energetics correlate to mechanical properties. Enthalpies of formation from components (SiC, SiO2, Si3N4, and C, ∆H°f,comp) for Tyranno, Hi‐Nicalon, and Sylramic are −12.05 ± 8.71, −58.75 ± 6.93, and −71.10 ± 8.71 kJ/mol Si, respectively. The microstructure in Sylramic offers the greatest stabilizing effect, thus resulting in its much more exothermic enthalpy of formation relative to elements and crystalline components. In contrast, the microstructure in Tyranno offers the least stabilization. The thermodynamic stability of the fibers increases with increasing mixed bonding (Si bonded to both C and O). From mechanical testing, Young's moduli of Tyranno, Hi‐Nicalon, and Sylramic are 112, 205, and 215 GPa, respectively. Greater thermodynamic stability is correlated with a higher Young's modulus.

 
more » « less
Award ID(s):
1743701
NSF-PAR ID:
10371318
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Ceramic Engineering & Science
Volume:
4
Issue:
5
ISSN:
2578-3270
Page Range / eLocation ID:
p. 315-326
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This work systematically investigates the thermodynamic stability of SiaOb(M)cCdstructures derived from polymeric precursors incorporating metal fillers: Ta, Nb, and Hf, at 1200 and 1500°C. Structural characterization of the polymer derived ceramics (PDCs) employs X‐ray diffraction, Fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy. Enthalpies of formation relative to crystalline components (metal oxide, silica, silicon carbide, and graphite) are obtained from thermodynamic measurements by high temperature oxide melt solution calorimetry. The enthalpies of formation (∆H°f, comp) of Ta‐1200, Hf‐1200, Nb‐1200, Ta‐1500, Hf‐1500, and Nb‐1500 specimens are −137.82 ± 9.72, −256.31 ± 8.97, −82.80 ± 9.82, −182.80 ± 7.85, −292.54 ± 9.38, −224.98 ± 9.60 kJ/mol, respectively. Overall incorporation of Hf results in most thermodynamically stable structures at all synthesis temperatures. SiaOb(M)cCdspecimens employing Nb fillers undergo the most stable structural evolution in this temperature range. The results indicate strong thermodynamic drive for carbothermal reduction of metal oxide domains. Incorporation of Ta provides the greatest stabilization of SiO3C mixed bonding environments. Ultimately, the choice of metal filler influences composition, structural evolution, and thermodynamic stability in PDCs.

     
    more » « less
  2. Abstract

    This study presents new experimental data on the thermodynamic stability of SiC(O) and SCN(O) ceramics derived from the pyrolysis of polymeric precursors: SMP‐10 (polycarbosilane), PSZ‐20 (polysilazane), and Durazane‐1800 (polysilazane) at 1200°C. There are close similarities in the structure of the polysilazanes, but they differ in crosslinking temperature. High‐resolution X‐ray photoelectron spectroscopy shows notable differences in the microstructure of all polymer‐derived ceramics (PDCs). The enthalpies of formation (∆H°f, elem) of SiC(O) (from SMP‐10), SCN(O) (from PSZ‐20), and SCN(O) (from Durazane‐1800) are −20 ± 4.63, −78.55 ± 2.32, and −85.09 ± 2.18 kJ/mol, respectively. The PDC derived from Durazane‐1800 displays greatest thermodynamic stability. The results point to increased thermodynamic stabilization with addition of nitrogen to the microstructure of PDCs. Thermodynamic analysis suggests increased thermodynamic drive for forming SiCN(O) microstructures with an increase in the relative amount of SiNxC4−xmixed bonds and a decrease in silica. Overall, enthalpies of formation suggest superior stabilizing effect of SiNxC4−xcompared to SiOxC4−xmixed bonds. The results indicate systematic stabilization of SiCN(O) structures with decrease in silicon and oxygen content. The destabilization of PDCs resulting from higher silicon content may reach a plateau at higher concentrations.

     
    more » « less
  3. Abstract Temperature limitations in nickel‐base superalloys have resulted in the emergence of SiC‐based ceramic matrix composites as a viable replacement for gas turbine components in aviation applications. Higher operating temperatures allow for reduced fuel consumption but present a materials design challenge related to environmental degradation. Rare‐earth disilicates (RE 2 Si 2 O 7 ) have been identified as coatings that can function as environmental barriers and minimize hot component degradation. In this work, single‐ and multiple‐component rare‐earth disilicate powders were synthesized via a sol‐gel method with compositions selected to exist in the monoclinic C 2/ m phase ( β phase). Phase stability in multiple cation compositions was shown to follow a rule of mixtures and the C 2/ m phase could be realized for compositions that contained up to 25% dysprosium, which typically only exists in a triclinic, P , phase. All compositions exhibited phase stability from room temperature to 1200°C as assessed by X‐ray diffraction. The thermal expansion tensors for each composition were determined from high‐temperature synchrotron X‐ray diffraction and accompanying Rietveld refinements. It was observed that ytterbium‐containing compositions had larger changes in the α 31 shear component with increasing temperature that led to a rotation of the principal axes. Principal axes rotation of up to 47° were observed for ytterbium disilicate. The results suggest that microstructure design and crystallographic texture may be essential future avenues of investigation to ensure thermo‐mechanical robustness of rare‐earth disilicate environmental barrier coatings. 
    more » « less
  4. Abstract

    We present results from high‐pressure and high‐temperature experiments on mixtures of SiC and SiO2to explore the stability of SiC in the presence of oxygen‐rich silicates at planetary mantle conditions. We observe no evidence of the ambient pressure predicted oxidation products, CO or SiO, resulting from oxidation reactions between SiC and SiO2at pressures up to ~40 GPa and temperatures up to ~2500 K. We observe the decomposition of SiC through releasing C, resulting in vacancies in the SiC lattice and consequently the contracted SiC ambient volume V0observed in the heated regions of sample. The decomposition is further supported by the observations of diamond formation and the expanded SiO2V0in the heated regions of samples indicating the incorporation of C into SiO2stishovite. We provide a new interpretation of SiC decomposition on laboratory timescales, in which kinetics prevent the reaction from reaching equilibrium. We consider how the equilibrium decomposition reaction of SiC will influence the differentiation of a SiC‐containing body on planetary timescales and find that the decomposition products may become isolated during early planetary differentiation. The resulting presence of elemental Si and C within a planetary body may have important consequences for the compositions of the mantles and atmospheres of such planets.

     
    more » « less
  5. Abstract

    Strong and tough bio‐based fibers are attractive for both fundamental research and practical applications. In this work, strong and tough hierarchical core–shell fibers with cellulose nanofibrils (CNFs) in the core and regenerated silk fibroins (RSFs) in the shell are designed and prepared, mimicking natural spider silks. CNF/RSF core–shell fibers with precisely controlled morphology are continuously wet‐spun using a co‐axial microfluidic device. Highly‐dense non‐covalent interactions are introduced between negatively‐charged CNFs in the core and positively‐charged RSFs in the shell, diminishing the core/shell interface and forming an integral hierarchical fiber. Meanwhile, shearing by microfluidic channels and post‐stretching induce a better ordering of CNFs in the core and RSFs in the shell, while ordered CNFs and RSFs are more densely packed, thus facilitating the formation of non‐covalent interactions within the fiber matrix. Therefore, CNF/RSF core–shell fibers demonstrate excellent mechanical performances; especially after post‐stretching, their tensile strength, tensile strain, Young's modulus, and toughness are up to 635 MPa, 22.4%, 24.0 GPa, and 110 MJ m−3, respectively. In addition, their mechanical properties are barely compromised even at −40 and 60 °C. Static load and dynamic impact tests suggest that CNF/RSF core–shell fibers are strong and tough, making them suitable for advanced structural materials.

     
    more » « less