skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A linear noise approximation for stochastic epidemic models fit to partially observed incidence counts
Abstract Stochastic epidemic models (SEMs) fit to incidence data are critical to elucidating outbreak dynamics, shaping response strategies, and preparing for future epidemics. SEMs typically represent counts of individuals in discrete infection states using Markov jump processes (MJPs), but are computationally challenging as imperfect surveillance, lack of subject‐level information, and temporal coarseness of the data obscure the true epidemic. Analytic integration over the latent epidemic process is impossible, and integration via Markov chain Monte Carlo (MCMC) is cumbersome due to the dimensionality and discreteness of the latent state space. Simulation‐based computational approaches can address the intractability of the MJP likelihood, but are numerically fragile and prohibitively expensive for complex models. A linear noise approximation (LNA) that approximates the MJP transition density with a Gaussian density has been explored for analyzing prevalence data in large‐population settings, but requires modification for analyzing incidence counts without assuming that the data are normally distributed. We demonstrate how to reparameterize SEMs to appropriately analyze incidence data, and fold the LNA into a data augmentation MCMC framework that outperforms deterministic methods, statistically, and simulation‐based methods, computationally. Our framework is computationally robust when the model dynamics are complex and applies to a broad class of SEMs. We evaluate our method in simulations that reflect Ebola, influenza, and SARS‐CoV‐2 dynamics, and apply our method to national surveillance counts from the 2013–2015 West Africa Ebola outbreak.  more » « less
Award ID(s):
1936833
PAR ID:
10364323
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrics
Volume:
78
Issue:
4
ISSN:
0006-341X
Format(s):
Medium: X Size: p. 1530-1541
Size(s):
p. 1530-1541
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundNo versatile web app exists that allows epidemiologists and managers around the world to comprehensively analyze the impacts of COVID-19 mitigation. Thehttp://covid-webapp.numerusinc.com/web app presented here fills this gap. MethodsOur web app uses a model that explicitly identifies susceptible, contact, latent, asymptomatic, symptomatic and recovered classes of individuals, and a parallel set of response classes, subject to lower pathogen-contact rates. The user inputs a CSV file of incidence and, if of interest, mortality rate data. A default set of parameters is available that can be overwritten through input or online entry, and a user-selected subset of these can be fitted to the model using maximum-likelihood estimation (MLE). Model fitting and forecasting intervals are specifiable and changes to parameters allow counterfactual and forecasting scenarios. Confidence or credible intervals can be generated using stochastic simulations, based on MLE values, or on an inputted CSV file containing Markov chain Monte Carlo (MCMC) estimates of one or more parameters. ResultsWe illustrate the use of our web app in extracting social distancing, social relaxation, surveillance or virulence switching functions (i.e., time varying drivers) from the incidence and mortality rates of COVID-19 epidemics in Israel, South Africa, and England. The Israeli outbreak exhibits four distinct phases: initial outbreak, social distancing, social relaxation, and a second wave mitigation phase. An MCMC projection of this latter phase suggests the Israeli epidemic will continue to produce into late November an average of around 1500 new case per day, unless the population practices social-relaxation measures at least 5-fold below the level in August, which itself is 4-fold below the level at the start of July. Our analysis of the relatively late South African outbreak that became the world’s fifth largest COVID-19 epidemic in July revealed that the decline through late July and early August was characterised by a social distancing driver operating at more than twice the per-capita applicable-disease-class (pc-adc) rate of the social relaxation driver. Our analysis of the relatively early English outbreak, identified a more than 2-fold improvement in surveillance over the course of the epidemic. It also identified a pc-adc social distancing rate in early August that, though nearly four times the pc-adc social relaxation rate, appeared to barely contain a second wave that would break out if social distancing was further relaxed. ConclusionOur web app provides policy makers and health officers who have no epidemiological modelling or computer coding expertise with an invaluable tool for assessing the impacts of different outbreak mitigation policies and measures. This includes an ability to generate an epidemic-suppression or curve-flattening index that measures the intensity with which behavioural responses suppress or flatten the epidemic curve in the region under consideration. 
    more » « less
  2. Hill, Edward M (Ed.)
    Trends in infectious disease incidence provide important information about epidemic dynamics and prospects for control. Higher-frequency variation around incidence trends can shed light on the processes driving epidemics in complex populations, as transmission heterogeneity, shifting landscapes of susceptibility, and fluctuations in reporting can impact the volatility of observed case counts. However, measures of temporal volatility in incidence, and how volatility changes over time, are often overlooked in population-level analyses of incidence data, which typically focus on moving averages. Here we present a statistical framework to quantify temporal changes in incidence dispersion and to detect rapid shifts in the dispersion parameter, which may signal new epidemic phases. We apply the method to COVID-19 incidence data in 144 United States (US) counties from January 1st, 2020 to March 23rd, 2023. Theory predicts that dispersion should be inversely proportional to incidence, however our method reveals pronounced temporal trends in dispersion that are not explained by incidence alone, but which are replicated across counties. In particular, dispersion increased around the major surge in cases in 2022, and highly overdispersed patterns became more frequent later in the time series. These increases potentially indicate transmission heterogeneity, changes in the susceptibility landscape, or that there were changes in reporting. Shifts in dispersion can also indicate shifts in epidemic phase, so our method provides a way for public health officials to anticipate and manage changes in epidemic regime and the drivers of transmission. 
    more » « less
  3. Zika virus (ZIKV) is an emerging mosquito-borne arbovirus that can produce serious public health consequences. In 2016, ZIKV caused an epidemic in many countries around the world, including the United States. ZIKV surveillance and vector control is essential to combating future epidemics. However, challenges relating to the timely publication of case reports significantly limit the effectiveness of current surveillance methods. In many countries with poor infrastructure, established systems for case reporting often do not exist. Previous studies investigating the H1N1 pandemic, general influenza and the recent Ebola outbreak have demonstrated that time- and geo-tagged Twitter data, which is immediately available, can be utilized to overcome these limitations. 
    more » « less
  4. Simple mathematical tools are needed to quantify the threat posed by emerging and re-emerging infectious disease outbreaks using minimal data capturing the outbreak trajectory. Here we use mathematical analysis, simulation and COVID-19 epidemic data to demonstrate a novel approach to numerically and mathematically characterize the rate at which the doubling time of an epidemic is changing over time. For this purpose, we analyze the dynamics of epidemic doubling times during the initial epidemic stage, defined as the sequence of times at which the cumulative incidence doubles. We introduce new methodology to characterize epidemic threats by analyzing the evolution of epidemics as a function of (1) the number of times the epidemic doubles until the epidemic peak is reached and (2) the rate at which the doubling times increase. In our doubling-time approach, the most dangerous epidemic threats double in size many times and the doubling times change at a relatively low rate (e.g., doubling times remain nearly invariant) whereas the least transmissible threats double in size only a few times and the doubling times rapidly increases in the period of emergence. We derive analytical formulas and test and illustrate our methodology using synthetic and COVID-19 epidemic data. Our mathematical analysis demonstrates that the series of epidemic doubling times increase approximately according to an exponential function with a rate that quantifies the rate of change of the doubling times. Our analytic results are in excellent agreement with numerical results. Our methodology offers a simple and intuitive approach that relies on minimal outbreak trajectory data to characterize the threat posed by emerging and re-emerging infectious diseases. 
    more » « less
  5. Abstract The 2018–2020 Ebola virus disease epidemic in Democratic Republic of the Congo (DRC) resulted in 3481 cases (probable and confirmed) and 2299 deaths. In this paper, we use a novel statistical method to analyze the individual-level incidence and hospitalization data on DRC Ebola victims. Our analysis suggests that an increase in the rate of quarantine and isolation that has shortened the infectiousness period by approximately one day during the epidemic’s third and final wave was likely responsible for the eventual containment of the outbreak. The analysis further reveals that the total effective population size or the average number of individuals at risk for the disease exposure in three epidemic waves over the period of 24 months was around 16,000–a much smaller number than previously estimated and likely an evidence of at least partial protection of the population at risk through ring vaccination and contact tracing as well as adherence to strict quarantine and isolation policies. 
    more » « less