The influence of the Unified Noah and Noah-MP land surface models (LSMs) on the evolution of cumulus clouds reaching convective initiation (CI) is assessed using infrared brightness temperatures (BT) from GOES-16. Cloud properties from individual cloud objects are examined using output from high-resolution (500 m horizontal grid spacing) model simulations. Cloud objects are tracked over time and related to observed clouds reaching CI to examine differences in cloud extent, longevity, and growth rate. The results demonstrate that differences in assumed surface properties can lead to large discrepancies in the net surface radiative budget, particularly in the sensible and latent heating components where differences exceed 40 W m−2. These differences lead to changes in the local mesoscale circulation patterns that are more pronounced near the edges of forested and grassland boundaries where lower-level convergence is stronger. Higher sensible heating from the Noah-MP LSM produced growth of CI clouds earlier and with increased longevity, which was closer to the timing and growth observed from GOES-16. The increased cloud growth in the Noah-MP experiment results from stronger and deeper updrafts, which lofts more cloud water into the upper levels of the troposphere. The weaker updrafts from the Noah LSM experiment results in shallower convection after CI is detected due to slower growth rates. The differences in cloud properties and growth are directly related to the land surfaces they develop above and point to the importance of accurately representing land properties and radiative characteristics when simulating convection in numerical weather prediction models.
more »
« less
Evaluating Convective Initiation in High-Resolution Numerical Weather Prediction Models Using GOES-16 Infrared Brightness Temperatures
Abstract The evolution of model-based cloud-top brightness temperatures (BT) associated with convective initiation (CI) is assessed for three bulk cloud microphysics schemes in the Weather Research and Forecasting Model. Using a composite-based analysis, cloud objects derived from high-resolution (500 m) model simulations are compared to 5-minGOES-16imagery for a case study day located near the Alabama–Mississippi border. Observed and simulated cloud characteristics for clouds reaching CI are examined by utilizing infrared BTs commonly used in satellite-based CI nowcasting methods. The results demonstrate the ability of object-based verification methods with satellite observations to evaluate the evolution of model cloud characteristics, and the BT comparison provides insight into a known issue of model simulations producing too many convective cells reaching CI. The timing of CI from the different microphysical schemes is dependent on the production of ice in the upper levels of the cloud, which typically occurs near the time of maximum cloud growth. In particular, large differences in precipitation formation drive differences in the amount of cloud water able to reach upper layers of the cloud, which impacts cloud-top glaciation. Larger cloud mixing ratios are found in clouds with sustained growth leading to more cloud water lofted to the upper levels of the cloud and the formation of ice. Clouds unable to sustain growth lack the necessary cloud water needed to form ice and grow into cumulonimbus. Clouds with slower growth rates display similar BT trends as clouds exhibiting growth, which suggests that forecasting CI using geostationary satellites might require additional information beyond those derived at cloud top.
more »
« less
- Award ID(s):
- 1746475
- PAR ID:
- 10364362
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Monthly Weather Review
- Volume:
- 149
- Issue:
- 4
- ISSN:
- 0027-0644
- Page Range / eLocation ID:
- p. 1153-1172
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The influence of the Unified Noah and Noah‐MP land surface models (LSMs) on the evolution of cumulus clouds reaching convective initiation (CI) is assessed using infrared brightness temperatures (BT) from GOES‐16. Cloud properties from individual cloud objects are examined using output from high‐resolution (500 m horizontal grid spacing) model simulations. Cloud objects are tracked over time and related to observed clouds reaching CI to examine differences in cloud extent, longevity, and growth rate. The results demonstrate that differences in assumed surface properties can lead to large discrepancies in the net surface radiative budget, particularly in the sensible and latent heating components where differences exceed 40 W m−2. These differences lead to changes in the local mesoscale circulation patterns that are more pronounced near the edges of forested and grassland boundaries where lower‐level convergence is stronger. Higher sensible heating from the Noah‐MP LSM produced growth of CI clouds earlier and with increased longevity, which was closer to the timing and growth observed from GOES‐16. The increased cloud growth in the Noah‐MP experiment results from stronger and deeper updrafts, which lofts more cloud water into the upper levels of the troposphere. The weaker updrafts from the Noah LSM experiment results in shallower convection after CI is detected due to slower growth rates. The differences in cloud properties and growth are directly related to the land surfaces they develop above and point to the importance of accurately representing land properties and radiative characteristics when simulating convection in numerical weather prediction models.more » « less
-
Abstract. Regions with high ice water content (HIWC), composed of mainly small ice crystals, frequently occur over convective clouds in the tropics. Such regions can have median mass diameters (MMDs) <300 µm and equivalent radar reflectivities <20 dBZ. To explore formation mechanisms for these HIWCs, high-resolution simulations of tropical convective clouds observed on 26 May 2015 during the High Altitude Ice Crystals – High Ice Water Content (HAIC-HIWC) international field campaign based out of Cayenne, French Guiana, are conducted using the Weather Research and Forecasting (WRF) model with four different bulk microphysics schemes: the WRF single‐moment 6‐class microphysics scheme (WSM6), the Morrison scheme, and the Predicted Particle Properties (P3) scheme with one- and two-ice options. The simulations are evaluated against data from airborne radar and multiple cloud microphysics probes installed on the French Falcon 20 and Canadian National Research Council (NRC) Convair 580 sampling clouds at different heights. WRF simulations with different microphysics schemes generally reproduce the vertical profiles of temperature, dew-point temperature, and winds during this event compared with radiosonde data, and the coverage and evolution of this tropical convective system compared to satellite retrievals. All of the simulations overestimate the intensity and spatial extent of radar reflectivity by over 30 % above the melting layer compared to the airborne X-band radar reflectivity data. They also miss the peak of the observed ice number distribution function for 0.1<1 mm. Even though the P3 scheme has a very different approach representing ice, it does not produce greatly different total condensed water content or better comparison to other observations in this tropical convective system. Mixed-phase microphysical processes at −10 ∘C are associated with the overprediction of liquid water content in the simulations with the Morrison and P3 schemes. The ice water content at −10 ∘C increases mainly due to the collection of liquid water by ice particles, which does not increase ice particle number but increases the mass/size of ice particles and contributes to greater simulated radar reflectivity.more » « less
-
Abstract Pervasive cirrus clouds in the upper troposphere and tropical tropopause layer (TTL) influence the climate by altering the top‐of‐atmosphere radiation balance and stratospheric water vapor budget. These cirrus are often associated with deep convection, which global climate models must parameterize and struggle to accurately simulate. By comparing high‐resolution global storm‐resolving models from the Dynamics of the Atmospheric general circulation Modeled On Non‐hydrostatic Domains (DYAMOND) intercomparison that explicitly simulate deep convection to satellite observations, we assess how well these models simulate deep convection, convectively generated cirrus, and deep convective injection of water into the TTL over representative tropical land and ocean regions. The DYAMOND models simulate deep convective precipitation, organization, and cloud structure fairly well over land and ocean regions, but with clear intermodel differences. All models produce frequent overshooting convection whose strongest updrafts humidify the TTL and are its main source of frozen water. Intermodel differences in cloud properties and convective injection exceed differences between land and ocean regions in each model. We argue that, with further improvements, global storm‐resolving models can better represent tropical cirrus and deep convection in present and future climates than coarser‐resolution climate models. To realize this potential, they must use available observations to perfect their ice microphysics and dynamical flow solvers.more » « less
-
Abstract Convective initiation (CI) nowcasting remains a challenging problem for both numerical weather prediction models and existing nowcasting algorithms. In this study, an object-based probabilistic deep learning model is developed to predict CI based on multichannel infraredGOES-16satellite observations. The data come from patches surrounding potential CI events identified in Multi-Radar Multi-Sensor Doppler weather radar products over the Great Plains region from June and July 2020 and June 2021. An objective radar-based approach is used to identify these events. The deep learning model significantly outperforms the classical logistic model at lead times up to 1 h, especially on the false alarm ratio. Through case studies, the deep learning model exhibits dependence on the characteristics of clouds and moisture at multiple altitudes. Model explanation further reveals that the contribution of features to model predictions is significantly dependent on the baseline, a reference point against which the prediction is compared. Under a moist baseline, moisture gradients in the lower and middle troposphere contribute most to correct CI forecasts. In contrast, under a clear-sky baseline, correct CI forecasts are dominated by cloud-top features, including cloud-top glaciation, height, and cloud coverage. Our study demonstrates the advantage of using different baselines in further understanding model behavior and gaining scientific insights.more » « less
An official website of the United States government
