skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Physically Explainable Deep Learning for Convective Initiation Nowcasting Using GOES-16 Satellite Observations
Abstract Convective initiation (CI) nowcasting remains a challenging problem for both numerical weather prediction models and existing nowcasting algorithms. In this study, an object-based probabilistic deep learning model is developed to predict CI based on multichannel infraredGOES-16satellite observations. The data come from patches surrounding potential CI events identified in Multi-Radar Multi-Sensor Doppler weather radar products over the Great Plains region from June and July 2020 and June 2021. An objective radar-based approach is used to identify these events. The deep learning model significantly outperforms the classical logistic model at lead times up to 1 h, especially on the false alarm ratio. Through case studies, the deep learning model exhibits dependence on the characteristics of clouds and moisture at multiple altitudes. Model explanation further reveals that the contribution of features to model predictions is significantly dependent on the baseline, a reference point against which the prediction is compared. Under a moist baseline, moisture gradients in the lower and middle troposphere contribute most to correct CI forecasts. In contrast, under a clear-sky baseline, correct CI forecasts are dominated by cloud-top features, including cloud-top glaciation, height, and cloud coverage. Our study demonstrates the advantage of using different baselines in further understanding model behavior and gaining scientific insights.  more » « less
Award ID(s):
2019758 2425659
PAR ID:
10534407
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Artificial Intelligence for the Earth Systems
Volume:
3
Issue:
3
ISSN:
2769-7525
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The evolution of model-based cloud-top brightness temperatures (BT) associated with convective initiation (CI) is assessed for three bulk cloud microphysics schemes in the Weather Research and Forecasting Model. Using a composite-based analysis, cloud objects derived from high-resolution (500 m) model simulations are compared to 5-minGOES-16imagery for a case study day located near the Alabama–Mississippi border. Observed and simulated cloud characteristics for clouds reaching CI are examined by utilizing infrared BTs commonly used in satellite-based CI nowcasting methods. The results demonstrate the ability of object-based verification methods with satellite observations to evaluate the evolution of model cloud characteristics, and the BT comparison provides insight into a known issue of model simulations producing too many convective cells reaching CI. The timing of CI from the different microphysical schemes is dependent on the production of ice in the upper levels of the cloud, which typically occurs near the time of maximum cloud growth. In particular, large differences in precipitation formation drive differences in the amount of cloud water able to reach upper layers of the cloud, which impacts cloud-top glaciation. Larger cloud mixing ratios are found in clouds with sustained growth leading to more cloud water lofted to the upper levels of the cloud and the formation of ice. Clouds unable to sustain growth lack the necessary cloud water needed to form ice and grow into cumulonimbus. Clouds with slower growth rates display similar BT trends as clouds exhibiting growth, which suggests that forecasting CI using geostationary satellites might require additional information beyond those derived at cloud top. 
    more » « less
  2. Research on nowcasting through dual-polarization weather radar data using deep learning approach is rare but worth exploring. This paper lightens a previous work, the MCT (Multivariate Channel Transformer) model, which leads to the design of the MSF (Multivariate Swin Fusion) model. The commonalities between the two are as follows: on one hand, both fuses several dual-polarization observables including reflectivity (Z), specific differential phase (Kdp ), and differential reflectivity (Zdr ) to more comprehensively consider meteorological particle features; on the other hand, they introduces the attention mechanism to more fully fuse multi-frame, multi-variate, and multi-scale features. In the experimental evaluation, this study first selects observation data from KMLB radar in FL, USA, and uses traditional optical flow method, deep learning TrajGRU method, etc. as controls. The results show that both MCT and MSF perform better than the control, and the 60min forecast scores of both are 8.78/9.31 for RMSE and 0.46/0.18/0.07 for CSI (20/35/45dBZ), and this conclusion is verified by case study. Further, the role of the attention mechanism is verified by ablation experiments. 
    more » « less
  3. The task of nowcasting by deep learning using multivariate, rather than just reflectivity, is limited by poor interpretability. The previous experiment designed MCT (Multivariate Channel Transformer), a deep learning model capable of nowcasting with dual-polarization radar data. Four analytical methods are designed to further explore the contribution of polarization parameters: (i) Case studies of different meteorological processes. (ii) A permutation test ranking the significance of each variable. (iii) Visualization of the feature maps obtained by forward propagation of the input data. (iv) Data downscaling of polarimetric radar data. The results show that the polarization parameters serve as a guide to predict the location and shape of strong reflectivity, as well as the energy retention of strong echoes at 40-50 dBZ. The contributions of Zdr and Kdp are more evident in the prediction results after 30 min, and the importance of Kdp exceeds that of Zdr in case of strong convective weather. 
    more » « less
  4. Abstract ObjectivesThe predictive intensive care unit (ICU) scoring system is crucial for predicting patient outcomes, particularly mortality. Traditional scoring systems rely mainly on structured clinical data from electronic health records, which can overlook important clinical information in narratives and images. Materials and MethodsIn this work, we build a deep learning-based survival prediction model that utilizes multimodality data for ICU mortality prediction. Four sets of features are investigated: (1) physiological measurements of Simplified Acute Physiology Score (SAPS) II, (2) common thorax diseases predefined by radiologists, (3) bidirectional encoder representations from transformers-based text representations, and (4) chest X-ray image features. The model was evaluated using the Medical Information Mart for Intensive Care IV dataset. ResultsOur model achieves an average C-index of 0.7829 (95% CI, 0.7620-0.8038), surpassing the baseline using only SAPS-II features, which had a C-index of 0.7470 (95% CI: 0.7263-0.7676). Ablation studies further demonstrate the contributions of incorporating predefined labels (2.00% improvement), text features (2.44% improvement), and image features (2.82% improvement). Discussion and ConclusionThe deep learning model demonstrated superior performance to traditional machine learning methods under the same feature fusion setting for ICU mortality prediction. This study highlights the potential of integrating multimodal data into deep learning models to enhance the accuracy of ICU mortality prediction. 
    more » « less
  5. Abstract Hailstorms cause billions of dollars in damage across the United States each year. Part of this cost could be reduced by increasing warning lead times. To contribute to this effort, we developed a nowcasting machine learning model that uses a 3D U-Net to produce gridded severe hail nowcasts for up to 40 min in advance. The three U-Net dimensions uniquely incorporate one temporal and two spatial dimensions. Our predictors consist of a combination of output from the National Severe Storms Laboratory Warn-on-Forecast System (WoFS) numerical weather prediction ensemble and remote sensing observations from Vaisala’s National Lightning Detection Network (NLDN). Ground truth for prediction was derived from the maximum expected size of hail calculated from the gridded NEXRAD WSR-88D radar (GridRad) dataset. Our U-Net was evaluated by comparing its test set performance against rigorous hail nowcasting baselines. These baselines included WoFS ensemble Hail and Cloud Growth Model (HAILCAST) and a logistic regression model trained on WoFS 2–5-km updraft helicity. The 3D U-Net outperformed both these baselines for all forecast period time steps. Its predictions yielded a neighborhood maximum critical success index (max CSI) of ∼0.48 and ∼0.30 at forecast minutes 20 and 40, respectively. These max CSIs exceeded the ensemble HAILCAST max CSIs by as much as ∼0.35. The NLDN observations were found to increase the U-Net performance by more than a factor of 4 at some time steps. This system has shown success when nowcasting hail during complex severe weather events, and if used in an operational environment, may prove valuable. 
    more » « less