Additive manufacturing, also known as three-dimensional (3D) printing, is an approach in which a structure may be fabricated layer by layer. For 3D inkjet printing, droplets are ejected from a nozzle and each layer is formed droplet by droplet. Inkjet printing has been widely applied for the fabrication of 3D biological gel structures, but the knowledge of the microscale interactions between printed droplets is still largely elusive. This study aims to elucidate the alginate layer formation process during drop-on-demand inkjet printing using high speed imaging and particle image velocimetry. Droplets are found to impact, spread, and coalesce within a fluid region at the deposition site, forming coherent printed lines within a layer. Interfaces are found to form between printed lines within a layer depending on printing conditions and printing path orientation. The effects of printing conditions on the behavior of droplets during layer formation are discussed and modeled based on gelation dynamics, and recommendations are presented to enable controllable and reliable fabrication of gel structures.
more »
« less
Making droplets from highly viscous liquids by pushing a wire through a tube
Drop-on-demand (DOD) printing is a versatile manufacturing tool, which has been widely used in applications ranging from graphic products to manufacturing of ceramics, even for cell engineering. However, the existing DOD methods cannot be applied for highly viscous materials: the printing technologies are typically limited to the inks with the water level viscosity and fall short to eject jets from thick fluids and break them into droplets. To address this challenge, a new wire-in-a-tube technology for drop generation has been developed replacing the nozzle generator with a wire-in-a-tube drop generator. We successfully formed droplets on demand from highly viscous (∼10 Pa s) liquids and studied the mechanisms of drop formation in the wire-in-a-tube drop generators. These mechanisms couple unique fluid mechanics, capillarity, and wetting phenomena providing a new platform that can be used in different microfluidic applications.
more »
« less
- Award ID(s):
- 1655740
- PAR ID:
- 10364386
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Physics of Fluids
- Volume:
- 34
- Issue:
- 3
- ISSN:
- 1070-6631
- Page Range / eLocation ID:
- Article No. 032119
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Hydrogels with particulates, including proteins, drugs, nanoparticles, and cells, enable the development of new and innovative biomaterials. Precise control of the spatial distribution of these particulates is crucial to produce advanced biomaterials. Thus, there is a high demand for manufacturing methods for particle-laden hydrogels. In this context, 3D printing of hydrogels is emerging as a promising method to create numerous innovative biomaterials. Among the 3D printing methods, inkjet printing, so-called drop-on-demand (DOD) printing, stands out for its ability to construct biomaterials with superior spatial resolutions. However, its printing processes are still designed by trial and error due to a limited understanding of the ink behavior during the printing processes. This review discusses the current understanding of transport processes and hydrogel behaviors during inkjet printing for particulate-laden hydrogels. Specifically, we review the transport processes of water and particulates within hydrogel during ink formulation, jetting, and curing. Additionally, we examine current inkjet printing applications in fabricating engineered tissues, drug delivery devices, and advanced bioelectronics components. Finally, the challenges and opportunities for next-generation inkjet printing are also discussed. Graphical Abstractmore » « less
-
With the developments in nanotechnology, nanofibrous materials attract great attention as possible platforms for fluidic engineering. This requires an understanding of droplet interactions with fibers when gravity plays no significant role. This work aims to classify all possible axisymmetric configurations of droplets on fibers. The contact angle that the drop makes with the fiber surface is allowed to change from 0° to 180°. Nodoidal apple-like droplets with inverted menisci cusped toward the droplet center and unduloidal droplets with menisci cusped away from the droplet center were introduced and fully analyzed. The existing theory describing axisymmetric droplets on fibers is significantly enriched introducing new morphological configurations of droplets. It is experimentally shown that the barreled droplets could be formed on non-wettable fibers offering contact angles greater than 90°. The theory was quantitatively confirmed with hemispherical droplets formed at the end of a capillary tube and satisfying all the boundary conditions of the model. It is expected that the developed theory could be used for the design of nanofiber-based fluidic devices and for drop-on-demand technologies.more » « less
-
Abstract The pharmaceutical manufacturing sector needs to rapidly evolve to absorb the next wave of disruptive industrial innovations—Industry 4.0. This involves incorporating technologies like artificial intelligence and 3D printing (3DP) to automate and personalize the drug production processes. This study aims to build a formulation and process design (FPD) framework for a pharmaceutical 3DP platform that recommends operating (formulation and process) conditions at which consistent drop printing can be obtained. The platform used in this study is a displacement‐based drop‐on‐demand 3D printer that manufactures dosages by additively depositing the drug formulation as droplets on a substrate. The FPD framework is built in two parts: the first part involves building a machine learning model to simulate the forward problem—predicting printer operation for given operating conditions and the second part seeks to solve and experimentally validate the inverse problem—predicting operating conditions that can yield desired printer operation.more » « less
-
Abstract Additive manufacturing (AM), also known as 3D printing, has significantly advanced in recent years, especially with the introduction of multifunctional 3D-printed parts. AM fabricated monolith has multiple material capabilities, thus various functionalities are well-perceived by the manufacturing communities. As an example, a traditional fused filament fabrication (FFF) 3D printer fabricates multi-material thermoplastic parts using a dual extrusion system to increase the functionality of the part including variable stiffening and gradient structures. In addition to the multiple thermoplastic feedstocks in a dual extrusion system, multifunctional AM can be achieved by embedding electronics or reinforcing fibers within the fabricated thermoplastic parts, which significantly impacts the rapid prototyping of hybrid components in manufacturing industries. State-of-the-art techniques such as coextrusion systems, ultrasonic welding tools, and thermal embedding tools have been implemented to automate the process of embedding conductive material within the 3D-printed thermoplastic substrate. The goal of this tool development effort is to embed wires within 3D 3D-printed plastic substrate. This research consisted of developing a wire embedding tool that can be integrated into an FFF desktop 3D printer to deposit conductive as well as resistive wires within the 3D-printed thermoplastic substrate. By realizing the challenges for discrete materials interaction at the interface such as nichrome wires and Acrylonitrile Butadiene Styrene (ABS) plastics and polylactic acid (PLA), the goal of this tool was to immerse wire within ABS and PLA substrate using transient swelling mechanisms under non-polar solvent. A proof-of-concept test stands with a wire feed system and the embedding wheel was first designed and manufactured using 3D printing to examine if a traditional roller-guided system, primarily used for plastic extrusion, would be sufficient for wire extrusion. The development of the integrated wire embedding tool was initiated based on the success of the proof-of-concept wire extrusion system. The design of the integrated wire embedding tool consisted of three sub-assemblies: wire delivery assembly, wire shearing assembly, and swivel assembly. The wire delivery assembly is responsible for feeding the wire towards the thermoplastic using the filament delivery system seen within FFF printers. For the wire shearing mechanism, a cutting Tungsten carbide blade in conjunction with a Nema-17 external stepper motor was used to shear the wire. For the wire embedding assembly, a custom swivel mount was fabricated with a bearing housing for a ball bearing that allowed for a 360-degree motion around the horizontal plane. A wire guide nozzle was placed through the mount to allow for the wire to be fed down into a brass embedding wheel in a tangential manner. Additionally, the solvent reservoir was mounted such that an even layer of solution was dispensed onto the thermoplastic substrate. Through this tool development effort, the aim was to develop technologies that will enable 3D printing of wire-embedded monolith for various applications including a self-heating mold of thermoset-based composite manufacturing as well as smart composites with embedded sensors.more » « less
An official website of the United States government
