This research evaluates and characterizes the thermal and physical characteristics of thermoplastic specimens embedded with resistive wire using a Fused Filament Fabrication 3D printer. The specimens were manufactured through a novel approach “Pause and Go” in additive manufacturing for embedding resistive wires into a 3D printed thermoplastic substrate using a custom-built wire embedding tool integrated into a commercially available desktop scale Independent Dual Extruder (IDEX) printer. Wire- embedded test specimens were produced via 3D printing using Polylactic Acid. The 26-gauge nichrome wire was embedded in the top substrate and continued the printing to fully embed the wires. Thermal testing was carried out and observed steady-state temperatures after 30 minutes. The wire pulls tests characterized the bonding strength of the wire and substrate. 
                        more » 
                        « less   
                    
                            
                            Development of Wire Delivery Tool With Desktop 3-D Printer for Multifunctional Additive Manufacturing
                        
                    
    
            Abstract Additive manufacturing (AM), also known as 3D printing, has significantly advanced in recent years, especially with the introduction of multifunctional 3D-printed parts. AM fabricated monolith has multiple material capabilities, thus various functionalities are well-perceived by the manufacturing communities. As an example, a traditional fused filament fabrication (FFF) 3D printer fabricates multi-material thermoplastic parts using a dual extrusion system to increase the functionality of the part including variable stiffening and gradient structures. In addition to the multiple thermoplastic feedstocks in a dual extrusion system, multifunctional AM can be achieved by embedding electronics or reinforcing fibers within the fabricated thermoplastic parts, which significantly impacts the rapid prototyping of hybrid components in manufacturing industries. State-of-the-art techniques such as coextrusion systems, ultrasonic welding tools, and thermal embedding tools have been implemented to automate the process of embedding conductive material within the 3D-printed thermoplastic substrate. The goal of this tool development effort is to embed wires within 3D 3D-printed plastic substrate. This research consisted of developing a wire embedding tool that can be integrated into an FFF desktop 3D printer to deposit conductive as well as resistive wires within the 3D-printed thermoplastic substrate. By realizing the challenges for discrete materials interaction at the interface such as nichrome wires and Acrylonitrile Butadiene Styrene (ABS) plastics and polylactic acid (PLA), the goal of this tool was to immerse wire within ABS and PLA substrate using transient swelling mechanisms under non-polar solvent. A proof-of-concept test stands with a wire feed system and the embedding wheel was first designed and manufactured using 3D printing to examine if a traditional roller-guided system, primarily used for plastic extrusion, would be sufficient for wire extrusion. The development of the integrated wire embedding tool was initiated based on the success of the proof-of-concept wire extrusion system. The design of the integrated wire embedding tool consisted of three sub-assemblies: wire delivery assembly, wire shearing assembly, and swivel assembly. The wire delivery assembly is responsible for feeding the wire towards the thermoplastic using the filament delivery system seen within FFF printers. For the wire shearing mechanism, a cutting Tungsten carbide blade in conjunction with a Nema-17 external stepper motor was used to shear the wire. For the wire embedding assembly, a custom swivel mount was fabricated with a bearing housing for a ball bearing that allowed for a 360-degree motion around the horizontal plane. A wire guide nozzle was placed through the mount to allow for the wire to be fed down into a brass embedding wheel in a tangential manner. Additionally, the solvent reservoir was mounted such that an even layer of solution was dispensed onto the thermoplastic substrate. Through this tool development effort, the aim was to develop technologies that will enable 3D printing of wire-embedded monolith for various applications including a self-heating mold of thermoset-based composite manufacturing as well as smart composites with embedded sensors. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2301925
- PAR ID:
- 10584330
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- ISBN:
- 978-0-7918-8811-7
- Format(s):
- Medium: X
- Location:
- Knoxville, Tennessee, USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Additive manufacturing promises to revolutionize manufacturing industries. However, 3D printing of novel build materials is currently limited by constraints inherent to printer designs. In this work, a bench-top powder melt extrusion (PME) 3D printer head was designed and fabricated to print parts directly from powder-based materials rather than filament. The final design of the PME printer head evolved from the Rich Rap Universal Pellet Extruder (RRUPE) design and was realized through an iterative approach. The PME printer was made possible by modifications to the funnel shape, pressure applied to the extrudate by the auger, and hot end structure. Through comparison of parts printed with the PME printer with those from a commercially available fused filament fabrication (FFF) 3D printer using common thermoplastics poly(lactide) (PLA), high impact poly(styrene) (HIPS), and acrylonitrile butadiene styrene (ABS) powders (< 1 mm in diameter), evaluation of the printer performance was performed. For each build material, the PME printed objects show comparable viscoelastic properties by dynamic mechanical analysis (DMA) to those of the FFF objects. However, due to a significant difference in printer resolution between PME (X–Y resolution of 0.8 mm and a Z-layer height calibrated to 0.1 mm) and FFF (X–Y resolution of 0.4 mm and a Z-layer height of 0.18 mm), as well as, an inherently more inconsistent feed of build material for PME than FFF, the resulting print quality, determined by a dimensional analysis and surface roughness comparisons, of the PME printed objects was lower than that of the FFF printed parts based on the print layer uniformity and structure. Further, due to the poorer print resolution and inherent inconsistent build material feed of the PME, the bulk tensile strength and Young’s moduli of the objects printed by PME were lower and more inconsistent (49.2 ± 10.7 MPa and 1620 ± 375 MPa, respectively) than those of FFF printed objects (57.7 ± 2.31 MPa and 2160 ± 179 MPa, respectively). Nevertheless, PME print methods promise an opportunity to provide a platform on which it is possible to rapidly prototype a myriad of thermoplastic materials for 3D printing.more » « less
- 
            Additive manufacturing (AM) of polymer composites with continuous fibers could play a major role in the future of aerospace and beyond but will require printed materials to achieve new levels of reliability. This study characterized the strength distribution of selected thermoplastic matrix composites as a func- tion of printing via fused filament fabrication (FFF). Experimental and commercial composite filaments of continuous carbon or Kevlar fibers were printed with volume fraction (Vf) ranging from approximately 28 to 56 %. The strength was evaluated under uniaxial tension after specific stages of printing and Weibull statistics were applied to characterize the strength distribution. There was a significant reduction in strength of the printed material with respect to the unprinted condition, regardless of reinforcement type, fiber volume fraction or printer used. Damage introduced by feed extrusion of the filament, and fiber failures induced at material deposition were most detrimental. For carbon fiber filaments, the reduc- tion ranged from approximately 10 % for an experimental material to over 60 % for a commercial filament. There was no correlation in the strength degradation or variability with Vf. The prevention of process-related fiber damage is key to advancing AM for continuous fiber composite and application to designs intended for stress-critical applications.more » « less
- 
            Maturing of additive manufacturing (AM) techniques has increased their utilization for fabricating radio frequency (RF) and microwave devices. Solid composites used in material extrusion AM have experienced considerable expansion over the past decade, incorporating functional properties into 3D-printed objects. There are encouraging indications from AM material research that electrically efficient AM materials can be discovered. These materials would be useful for producing microwave components in the future. One of the enabling techniques for fabricating these materials is to incorporate nano/microparticles or fillers into thermoplastic material. Composite material 3D printing is a novel approach to managing materials’ microwave properties. While extrinsic qualities (effective permittivity) can be controlled by shape and porosity management, intrinsic attributes are tied to the composition of composites. Furthermore, combining various materials to increase the spectrum of available microwave characteristics is made possible by multi-material 3D printing. In this chapter, we explore different methodologies to fabricate ceramic/thermoplastic composites for fused deposition modeling (FDM) of RF and microwave devices. Analytical models for predicting effective permittivity of the composite are discussed and application examples of FDM printed RF, microwave and mm-wave devices employing composites are presented.more » « less
- 
            null (Ed.)Abstract Pellet-based extrusion deposition of carbon fiber-reinforced composites at high material deposition rates has recently gained much attention due to its applications in large-scale additive manufacturing. The mechanical and physical properties of large-volume components largely depend on their reinforcing fiber length. However, very few studies have been done thus far to have a direct comparison of additively fabricated composites reinforced with different carbon fiber lengths. In this study, a new additive manufacturing (AM) approach to fabricate long fiber-reinforced polymer (LFRP) was first proposed. A pellet-based extrusion deposition method was implemented, which directly used thermoplastic pellets and continuous fiber tows as feedstock materials. Discontinuous long carbon fibers, with an average fiber length of 20.1 mm, were successfully incorporated into printed LFRP samples. The printed LFRP samples were compared with short fiber-reinforced polymer (SFRP) and continuous fiber-reinforced polymer (CFRP) counterparts through mechanical tests and microstructural analyses. The carbon fiber dispersion, distribution of carbon fiber length and orientation, and fiber wetting were studied. As expected, a steady increase in flexural strength was observed with increasing fiber length. The carbon fibers were highly oriented along the printing direction. A more uniformly distributed discontinuous fiber reinforcement was found within printed SFRP and LFRP samples. Due to decreased fiber impregnation time and lowered impregnation rate, the printed CFRP samples showed a lower degree of impregnation and worse fiber wetting conditions. The feasibility of the proposed AM methods was further demonstrated by fabricating large-volume components with complex geometries.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    