skip to main content


Title: Programming cell-free biosensors with DNA strand displacement circuits
Abstract

Cell-free biosensors are powerful platforms for monitoring human and environmental health. Here, we expand their capabilities by interfacing them with toehold-mediated strand displacement circuits, a dynamic DNA nanotechnology that enables molecular computation through programmable interactions between nucleic acid strands. We develop design rules for interfacing a small molecule sensing platform called ROSALIND with toehold-mediated strand displacement to construct hybrid RNA–DNA circuits that allow fine-tuning of reaction kinetics. We use these design rules to build 12 different circuits that implement a range of logic functions (NOT, OR, AND, IMPLY, NOR, NIMPLY, NAND). Finally, we demonstrate a circuit that acts like an analog-to-digital converter to create a series of binary outputs that encode the concentration range of the molecule being detected. We believe this work establishes a pathway to create ‘smart’ diagnostics that use molecular computations to enhance the speed and utility of biosensors.

 
more » « less
NSF-PAR ID:
10364463
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Chemical Biology
Volume:
18
Issue:
4
ISSN:
1552-4450
Page Range / eLocation ID:
p. 385-393
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The ability to create stimuli-responsive DNA nanostructures has played a prominent role in dynamic DNA nanotechnology. Primary among these is the process of toehold-based strand displacement, where a nucleic acid molecule can act as a trigger to cause conformational changes in custom-designed DNA nanostructures. Here, we add another layer of control to strand displacement reactions through a 'toehold clipping' process. By designing DNA complexes with a photocleavable linker-containing toehold or an RNA toehold, we show that we can use light (UV) or enzyme (ribonuclease) to eliminate the toehold, thus preventing strand displacement reactions. We use molecular dynamics simulations to analyze the structural effects of incorporating a photocleavable linker in DNA complexes. Beyond simple DNA duplexes, we also demonstrate the toehold clipping process in a model DNA nanostructure, by designing a toehold containing double-bundle DNA tetrahedron that disassembles when an invading strand is added, but stays intact after the toehold clipping process even in the presence of the invading strand. This work is an example of combining multiple physical or molecular stimuli to provide additional remote control over DNA nanostructure reconfiguration, advances that hold potential use in biosensing, drug delivery or molecular computation.

     
    more » « less
  2. Abstract

    Biomaterials with dynamically tunable properties are critical for a range of applications in regenerative medicine and basic biology. In this work, we show the reversible control of gelatin methacrylate (GelMA) hydrogel stiffness through the use of DNA crosslinkers. We replaced some of the inter‐GelMA crosslinks with double‐stranded DNA, allowing for their removal through toehold‐mediated strand displacement. The crosslinks could be restored by adding fresh dsDNA with complementary handles to those on the hydrogel. The elastic modulus (G’) of the hydrogels could be tuned between 500 and 1000 Pa, reversibly, over two cycles without degradation of performance. By functionalizing the gels with a second DNA strand, it was possible to control the crosslink density and a model ligand in an orthogonal fashion with two different displacement strands. Our results demonstrate the potential for DNA to reversibly control both stiffness and ligand presentation in a protein‐based hydrogel, and will be useful for teasing apart the spatiotemporal behavior of encapsulated cells.

     
    more » « less
  3. DNA strand displacement cascades have proven to be a uniquely flexible and programmable primitive for constructing molecular logic circuits, smart structures and devices, and for systems with complex autonomously generated dynamics. Limiting their utility, however, strand displacement systems are susceptible to the spurious release of output even in the absence of the proper combination of inputs—so-called leak. A common mechanism for reducing leak involves clamping the ends of helices to prevent fraying, and thereby kinetically blocking the initiation of undesired displacement. Since a clamp must act as the incumbent toehold for toehold exchange, clamps cannot be stronger than a toehold. In this paper we systematize the properties of the simplest of strand displacement cascades (a translator) with toehold-size clamps. Surprisingly, depending on a few basic parameters, we find a rich and diverse landscape for desired and undesired properties and trade-offs between them. Initial experiments demonstrate a significant reduction of leak. 
    more » « less
  4. Abstract

    Hybridization and strand displacement kinetics determine the evolution of the base paired configurations of mixtures of oligonucleotides over time. Although much attention has been focused on the thermodynamics of DNA and RNA base pairing in the scientific literature, much less work has been done on the time dependence of interactions involving multiple strands, especially in RNA. Here we provide a study of oligoribonucleotide interaction kinetics and show that it is possible to calculate the association, dissociation and strand displacement rates displayed by short oligonucleotides (5nt–12nt) that exhibit no expected secondary structure as simple functions of oligonucleotide length, CG content, ΔG of hybridization and ΔG of toehold binding. We then show that the resultant calculated kinetic parameters are consistent with the experimentally observed time dependent changes in concentrations of the different species present in mixtures of multiple competing RNA strands. We show that by changing the mixture composition, it is possible to create and tune kinetic traps that extend by orders of magnitude the typical sub-second hybridization timescale of two complementary oligonucleotides. We suggest that the slow equilibration of complex oligonucleotide mixtures may have facilitated the nonenzymatic replication of RNA during the origin of life.

     
    more » « less
  5. Abstract

    DNA has emerged as a powerful substrate for programming information processing machines at the nanoscale. Among the DNA computing primitives used today, DNA strand displacement (DSD) is arguably the most popular, with DSD-based circuit applications ranging from disease diagnostics to molecular artificial neural networks. The outputs of DSD circuits are generally read using fluorescence spectroscopy. However, due to the spectral overlap of typical small-molecule fluorescent reporters, the number of unique outputs that can be detected in parallel is limited, requiring complex optical setups or spatial isolation of reactions to make output bandwidths scalable. Here, we present a multiplexable sequencing-free readout method that enables real-time, kinetic measurement of DSD circuit activity through highly parallel, direct detection of barcoded output strands using nanopore sensor array technology (Oxford Nanopore Technologies’ MinION device). These results increase DSD output bandwidth by an order of magnitude over what is currently feasible with fluorescence spectroscopy.

     
    more » « less