skip to main content


Title: A nanopore interface for higher bandwidth DNA computing
Abstract

DNA has emerged as a powerful substrate for programming information processing machines at the nanoscale. Among the DNA computing primitives used today, DNA strand displacement (DSD) is arguably the most popular, with DSD-based circuit applications ranging from disease diagnostics to molecular artificial neural networks. The outputs of DSD circuits are generally read using fluorescence spectroscopy. However, due to the spectral overlap of typical small-molecule fluorescent reporters, the number of unique outputs that can be detected in parallel is limited, requiring complex optical setups or spatial isolation of reactions to make output bandwidths scalable. Here, we present a multiplexable sequencing-free readout method that enables real-time, kinetic measurement of DSD circuit activity through highly parallel, direct detection of barcoded output strands using nanopore sensor array technology (Oxford Nanopore Technologies’ MinION device). These results increase DSD output bandwidth by an order of magnitude over what is currently feasible with fluorescence spectroscopy.

 
more » « less
Award ID(s):
2006864
NSF-PAR ID:
10484235
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature communications
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The cerebellum consists of parallel circuit modules that contribute to diverse behaviors, spanning motor to cognitive. Recent work employing cell-type-specific tracing has identified circumscribed output channels of the cerebellar nuclei (CbN) that could confer tight functional specificity. These studies have largely focused on excitatory projections of the CbN, however, leaving open the question of whether inhibitory neurons also constitute multiple output modules. We mapped output and input patterns to intersectionally restricted cell types of the interposed and adjacent interstitial nuclei in mice. In contrast to the widespread assumption of primarily excitatory outputs and restricted inferior olive-targeting inhibitory output, we found that inhibitory neurons from this region ramified widely within the brainstem, targeting both motor- and sensory-related nuclei, distinct from excitatory output targets. Despite differences in output targeting, monosynaptic rabies tracing revealed largely shared afferents to both cell classes. We discuss the potential novel functional roles for inhibitory outputs in the context of cerebellar theory. 
    more » « less
  2. Abstract

    We prove that$${{\,\textrm{poly}\,}}(t) \cdot n^{1/D}$$poly(t)·n1/D-depth local random quantum circuits with two qudit nearest-neighbor gates on aD-dimensional lattice withnqudits are approximatet-designs in various measures. These include the “monomial” measure, meaning that the monomials of a random circuit from this family have expectation close to the value that would result from the Haar measure. Previously, the best bound was$${{\,\textrm{poly}\,}}(t)\cdot n$$poly(t)·ndue to Brandão–Harrow–Horodecki (Commun Math Phys 346(2):397–434, 2016) for$$D=1$$D=1. We also improve the “scrambling” and “decoupling” bounds for spatially local random circuits due to Brown and Fawzi (Scrambling speed of random quantum circuits, 2012). One consequence of our result is that assuming the polynomial hierarchy ($${{\,\mathrm{\textsf{PH}}\,}}$$PH) is infinite and that certain counting problems are$$\#{\textsf{P}}$$#P-hard “on average”, sampling within total variation distance from these circuits is hard for classical computers. Previously, exact sampling from the outputs of even constant-depth quantum circuits was known to be hard for classical computers under these assumptions. However the standard strategy for extending this hardness result to approximate sampling requires the quantum circuits to have a property called “anti-concentration”, meaning roughly that the output has near-maximal entropy. Unitary 2-designs have the desired anti-concentration property. Our result improves the required depth for this level of anti-concentration from linear depth to a sub-linear value, depending on the geometry of the interactions. This is relevant to a recent experiment by the Google Quantum AI group to perform such a sampling task with 53 qubits on a two-dimensional lattice (Arute in Nature 574(7779):505–510, 2019; Boixo et al. in Nate Phys 14(6):595–600, 2018) (and related experiments by USTC), and confirms their conjecture that$$O(\sqrt{n})$$O(n)depth suffices for anti-concentration. The proof is based on a previous construction oft-designs by Brandão et al. (2016), an analysis of how approximate designs behave under composition, and an extension of the quasi-orthogonality of permutation operators developed by Brandão et al. (2016). Different versions of the approximate design condition correspond to different norms, and part of our contribution is to introduce the norm corresponding to anti-concentration and to establish equivalence between these various norms for low-depth circuits. For random circuits with long-range gates, we use different methods to show that anti-concentration happens at circuit size$$O(n\ln ^2 n)$$O(nln2n)corresponding to depth$$O(\ln ^3 n)$$O(ln3n). We also show a lower bound of$$\Omega (n \ln n)$$Ω(nlnn)for the size of such circuit in this case. We also prove that anti-concentration is possible in depth$$O(\ln n \ln \ln n)$$O(lnnlnlnn)(size$$O(n \ln n \ln \ln n)$$O(nlnnlnlnn)) using a different model.

     
    more » « less
  3. Abstract

    Many quorum sensing microbes produce more than one chemical signal and detect them using interconnected pathways that crosstalk with each other. While there are many hypotheses for the advantages of sensing multiple signals, the prevalence and functional significance of crosstalk between pathways are much less understood. We explore the effect of intracellular signal crosstalk using a simple model that captures key features of typical quorum sensing pathways: multiple pathways in a hierarchical configuration, operating with positive feedback, with crosstalk at the receptor and promoter levels. We find that crosstalk enables activation or inhibition of one output by the non-cognate signal, broadens the dynamic range of the outputs, and allows one pathway to modulate the feedback circuit of the other. Our findings show how crosstalk between quorum sensing pathways can be viewed not as a detriment to the processing of information, but as a mechanism that enhances the functional range of the full regulatory system. When positive feedback systems are coupled through crosstalk, several new modes of activation or deactivation become possible.

     
    more » « less
  4. null (Ed.)
    Abstract. The lower-order moments of the drop size distribution (DSD) have generally been considered difficult to retrieve accurately from polarimetric radar data because these data are related to higher-order moments. For example, the 4.6th moment is associated with a specific differential phase and the 6th moment with reflectivity and ratio of high-order moments with differential reflectivity. Thus, conventionally, the emphasis has been to estimate rain rate (3.67th moment) or parameters of the exponential or gamma distribution for the DSD. Many double-moment “bulk” microphysical schemes predict the total number concentration (the 0th moment of the DSD, or M0) and the mixing ratio (or equivalently, the 3rd moment M3). Thus, it is difficult to compare the model outputs directly with polarimetric radar observations or, given the model outputs, forward model the radar observables. This article describes the use of double-moment normalization of DSDs and the resulting stable intrinsic shape that can be fitted by the generalized gamma (G-G) distribution. The two reference moments are M3 and M6, which are shown to be retrievable using the X-band radar reflectivity, differential reflectivity, and specific attenuation (from the iterative correction of measured reflectivity Zh using the total Φdp constraint, i.e., the iterative ZPHI method). Along with the climatological shape parameters of the G-G fit to the scaled/normalized DSDs, the lower-order moments are then retrieved more accurately than possible hitherto. The importance of measuring the complete DSD from 0.1 mm onwards is emphasized using, in our case, an optical array probe with 50 µm resolution collocated with a two-dimensional video disdrometer with about 170 µm resolution. This avoids small drop truncation and hence the accurate calculation of lower-order moments. A case study of a complex multi-cell storm which traversed an instrumented site near the CSU-CHILL radar is described for which the moments were retrieved from radar and compared with directly computed moments from the complete spectrum measurements using the aforementioned two disdrometers. Our detailed validation analysis of the radar-retrieved moments showed relative bias of the moments M0 through M2 was <15 % in magnitude, with Pearson’s correlation coefficient >0.9. Both radar measurement and parameterization errors were estimated rigorously. We show that the temporal variation of the radar-retrieved mass-weighted mean diameter with M0 resulted in coherent “time tracks” that can potentially lead to studies of precipitation evolution that have not been possible so far. 
    more » « less
  5. Exciton delocalization plays a prominent role in the photophysics of molecular aggregates, ultimately governing their particular function or application. DNA is a compelling scaffold in which to template molecular aggregates and promote exciton delocalization. As individual dye molecules are the basis of exciton delocalization in molecular aggregates, their judicious selection is important. Motivated by their excellent photostability and spectral properties, here we examine the ability of squaraine dyes to undergo exciton delocalization when aggregated via a DNA Holliday junction (HJ) template. A commercially available indolenine squaraine dye was chosen for the study given its strong structural resemblance to Cy5, a commercially available cyanine dye previously shown to undergo exciton delocalization in DNA HJs. Three types of DNA-dye aggregate configurations—transverse dimer, adjacent dimer, and tetramer—were investigated. Signatures of exciton delocalization were observed in all squaraine-DNA aggregates. Specifically, strong blue shift and Davydov splitting were observed in steady-state absorption spectroscopy and exciton-induced features were evident in circular dichroism spectroscopy. Strongly suppressed fluorescence emission provided additional, indirect evidence for exciton delocalization in the DNA-templated squaraine dye aggregates. To quantitatively evaluate and directly compare the excitonic Coulombic coupling responsible for exciton delocalization, the strength of excitonic hopping interactions between the dyes were obtained by simultaneous fitting the experimental steady-state absorption and CD spectra via a Holstein-like Hamiltonian in which, following the theoretical approach of Kühn, Renger, and May, the dominant vibrational mode is explicitly considered. The excitonic hopping strength within indolenine squaraines was found to be comparable to that of the analogous Cy5 DNA-templated aggregate. The squaraine aggregates adopted primarily an H-type (dyes oriented parallel to each other) spatial arrangement. Extracted geometric details of dye mutual orientation in the aggregates enabled close comparison of aggregate configurations and the elucidation of the influence of dye angular relationship on excitonic hopping interactions in squaraine aggregates. These results encourage the application of squaraine-based aggregates in next generation systems driven by molecular excitons. 
    more » « less