skip to main content


Title: Catchment‐scale observations at the Niwot Ridge long‐term ecological research site
Abstract

The Niwot Ridge and Green Lakes Valley (NWT) long‐term ecological research (LTER) site collects environmental observations spanning both alpine and subalpine regimes. The first observations began in 1952 and have since expanded to nearly 300 available datasets over an area of 99 km2within the north‐central Colorado Rocky Mountains that include hydrological (n = 101), biological (n = 79), biogeochemical (n = 62), and geographical (n = 56) observations. The NWT LTER database is well suited to support hydrologic investigations that require long‐term and interdisciplinary data sets. Experimentation and data collection at the NWT LTER are designed to characterize ecological responses of high‐mountain environments to changes in climate, nutrients, and water availability. In addition to the continuation of the many legacy NWT datasets, expansion of the breadth and utility of the NWT LTER database is driven by new initiatives including (a) a catchment‐scale sensor network of soil moisture, temperature, humidity, and snow‐depth observations to understand hydrologic connectivity and (b) snow‐albedo alteration experiments using black sand to evaluate the effects of snow‐disappearance on ecosystems. Together, these observational and experimental datasets provide a substantial foundation for hydrologic studies seeking to understand and predict changes to catchment and local‐scale process interactions.

 
more » « less
Award ID(s):
1637686
NSF-PAR ID:
10364534
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Hydrological Processes
Volume:
35
Issue:
9
ISSN:
0885-6087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Alpine ecosystems are experiencing rapid change as a result of warming temperatures and changes in the quantity, timing and phase of precipitation. This in turn impacts patterns and processes of ecohydrologic connectivity,vegetation productivity and water provision to downstream regions. The fine-scale heterogeneous nature of these environments makes them challengingareas to measure with traditional instrumentation and spatiotemporally coarse satellite imagery. This paper describes the data collection,processing, accuracy assessment and availability of a series of approximately weekly-interval uncrewed-aerial-system (UAS) surveys flown over the Niwot Ridge Long Term Ecological Research site during the 2017 summer-snowmelt season. Visible, near-infrared and thermal-infrared imagery was collected. This unique series of 5–25 cm resolution multi-spectral and thermal orthomosaics provides a unique snapshot of seasonal transitions in a high alpine catchment. Weekly radiometrically calibrated normaliseddifference vegetation index maps can be used to track vegetation health at the pixel scale through time. Thermal imagery can be used to map themovement of snowmelt across and within the near sub-surface as well as identify locations where groundwater is discharging to the surface. A 10 cm resolution digital surface model and dense point cloud (146 points m−2) are also providedfor topographic analysis of the snow-free surface. These datasets augment ongoing data collection within this heavily studied and importantalpine site; they are made publicly available to facilitate wider use by the research community. Datasets and related metadata can be accessed through the Environmental Data Initiative Data Portal, https://doi.org/10.6073/pasta/dadd5c2e4a65c781c2371643f7ff9dc4 (Wigmore, 2022a), https://doi.org/10.6073/pasta/073a5a67ddba08ba3a24fe85c5154da7 (Wigmore, 2022c), https://doi.org/10.6073/pasta/a4f57c82ad274aa2640e0a79649290ca(Wigmore and Niwot Ridge LTER, 2021a), https://doi.org/10.6073/pasta/444a7923deebc4b660436e76ffa3130c (Wigmore and Niwot Ridge LTER, 2021b), https://doi.org/10.6073/pasta/1289b3b41a46284d2a1c42f1b08b3807 (Wigmore and Niwot Ridge LTER, 2022a), https://doi.org/10.6073/pasta/70518d55a8d6ec95f04f2d8a0920b7b8 (Wigmore and Niwot Ridge LTER, 2022b). A summary of the available datasets can be found in the data availability section below.

     
    more » « less
  2. Abstract

    Population dynamics play a central role in the historical and current development of fundamental and applied ecological science. The nascent culture of open data promises to increase the value of population dynamics studies to the field of ecology. However, synthesis of population data is constrained by the difficulty in identifying relevant datasets, by the heterogeneity of available data and by access to raw (as opposed to aggregated or derived) observations.

    To obviate these issues, we built a relational database,popler, and itsRclient, the library popler.popleraccommodates the vast majority of population data under a common structure, and without the need for aggregating raw observations. The popler R library is designed for users unfamiliar with the structure of the database and with the SQL language. ThisRlibrary allows users to identify, download, explore and cite datasets salient to their needs.

    We implemented popler as a PostgreSQL instance, where we stored population data originated by the United States Long Term Ecological Research (LTER) Network. Our focus on the US LTER data aims to leverage the potential of this vast open data resource. The database currently contains 305 datasets from 25 LTER sites.popleris designed to accommodate automatic updates of existing datasets, and to accommodate additional datasets from LTER as well as non‐LTER studies.

    The combination of the online database and theRlibrary popler is a resource for data synthesis efforts in population ecology. The common structure ofpoplersimplifies comparative analyses, and the availability of raw data confers flexibility in data analysis. The popler R library maximizes these opportunities by providing a user‐friendly interface to the online database.

     
    more » « less
  3. Abstract

    The Hammond Hill Research Catchment (HH) is a small (120 ha), temperate, second order tributary to Six Mile Creek, Cayuga Lake, and the Great Lakes (42.42°, −76.32°). The HH has been monitored since January 2017 for the purpose of understanding how recent infiltration mixes with antecedent soil water on hillslope forest floors and the spatial and temporal patterns of Root Water Uptake (RWU) by temperate northeastern US tree species (eastern hemlock [Tsuga canadensis], American beech [Fagus grandifolia], and sugar maple [Acer saccharum]). These data are informing us about the hydrologic consequences of anticipated tree species composition change and supporting the development of more refined ecohydrological models. The glaciated catchment is underlain by a shallow confining siltstone layer (1–1.5 m depth) and densely covered with an approximately 60 year old regrowth mixed species forest of hemlock, beech, and other deciduous tree species common to the northeastern US. Current datasets from the HH include precipitation snow water equivalent, discharge, and associated isotopic water compositions, δ2H & δ18O. Measurements of (top 10 cm) soil water content, as well as bulk soil water and hemlock and beech xylem isotopic compositions are made at several locations across a topographic wetness gradient. The near‐term role of the HH is to support an understanding of the environmental and ecological drivers of plant RWU competition. All data from the HH are publicly available.

     
    more » « less
  4. Abstract

    This study integrated spatially distributed field observations and soil thermal models to constrain the impact of frozen ground on snowmelt partitioning and streamflow generation in an alpine catchment within the Niwot Ridge Long‐Term Ecological Research site, Colorado, USA. The study area was comprised of two contrasting hillslopes with notable differences in topography, snow depth and plant community composition. Time‐lapse electrical resistivity surveys and soil thermal models enabled extension of discrete soil moisture and temperature measurements to incorporate landscape variability at scales and depths not possible with point measurements alone. Specifically, heterogenous snowpack thickness (~0–4 m) and soil volumetric water content between hillslopes (~0.1–0.45) strongly influenced the depths of seasonal frost, and the antecedent soil moisture available to form pore ice prior to freezing. Variable frost depths and antecedent soil moisture conditions were expected to create a patchwork of differing snowmelt infiltration rates and flowpaths. However, spikes in soil temperature and volumetric water content, as well as decreases in subsurface electrical resistivity revealed snowmelt infiltration across both hillslopes that coincided with initial decreases in snow water equivalent and early increases in streamflow. Soil temperature, soil moisture and electrical resistivity data from both wet and dry hillslopes showed that initial increases in streamflow occurred prior to deep soil water flux. Temporal lags between snowmelt infiltration and deeper percolation suggested that the lateral movement of water through the unsaturated zone was an important driver of early streamflow generation. These findings provide the type of process‐based information needed to bridge gaps in scale and populate physically based cryohydrologic models to investigate subsurface hydrology and biogeochemical transport in soils that freeze seasonally.

     
    more » « less
  5. Abstract

    Long‐term experimental watershed studies have significantly influenced our global understanding of hydrological processes. The discovery and characterization of how stream water quantity and quality respond to a changing environment (e.g. land‐use change, acidic deposition) has only been possible due to the establishment of catchments devoted to long‐term study. One such catchment is the Fernow Experimental Forest (FEF) located in the headwaters of the Appalachian Mountains in West Virginia, a region that provides essential freshwater ecosystem services to eastern and mid‐western United States communities. Established in 1934, the FEF is among the earliest experimental watershed studies in the Eastern United States that continues to address emergent challenges to forest ecosystems, including climate change and other threats to forest health. This data note describes available data and presents some findings from more than 50 years of hydrologic research at the FEF. During the first few decades, research at the FEF focused on the relationship between forest management and hydrological processes—especially those related to the overall water balance. Later, research included the examination of interactions between hydrology and soil erosion, biogeochemistry, N‐saturation, and acid deposition. Hydro‐climatologic and water quality datasets from long‐term measurements and data from short‐duration studies are publicly available to provide new insights and foster collaborations that will continue to advance our understanding of hydrology in forested headwater catchments. As a result of its rich history of research and abundance of long‐term data, the FEF is positioned to continue to advance understanding of forest ecosystems in a time of unprecedented change.

     
    more » « less