skip to main content


Title: The thesan project: Lyman-α emission and transmission during the Epoch of Reionization
ABSTRACT

The visibility of high-redshift Lyman-alpha emitting galaxies (LAEs) provides important constraints on galaxy formation processes and the Epoch of Reionization (EoR). However, predicting realistic and representative statistics for comparison with observations represents a significant challenge in the context of large-volume cosmological simulations. The thesan project offers a unique framework for addressing such limitations by combining state-of-the-art galaxy formation (IllustrisTNG) and dust models with the arepo-rt radiation-magnetohydrodynamics solver. In this initial study, we present Lyman-alpha centric analysis for the flagship simulation that resolves atomic cooling haloes throughout a $(95.5\, \text{cMpc})^3$ region of the Universe. To avoid numerical artefacts, we devise a novel method for accurate frequency-dependent line radiative transfer in the presence of continuous Hubble flow, transferable to broader astrophysical applications as well. Our scalable approach highlights the utility of LAEs and red damping-wing transmission as probes of reionization, which reveal nontrivial trends across different galaxies, sightlines, and frequency bands that can be modelled in the framework of covering fractions. In fact, after accounting for environmental factors influencing large-scale ionized bubble formation such as redshift and UV magnitude, the variation across galaxies and sightlines mainly depends on random processes including peculiar velocities and self-shielded systems that strongly impact unfortunate rays more than others. Throughout the EoR local and cosmological optical depths are often greater than or less than unity such that the exp (− τ) behaviour leads to anisotropic and bimodal transmissivity. Future surveys will benefit by targeting both rare bright objects and Goldilocks zone LAEs to infer the presence of these (un)predictable (dis)advantages.

 
more » « less
Award ID(s):
1814259
NSF-PAR ID:
10364560
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
512
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 3243-3265
Size(s):
p. 3243-3265
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The observability of Lyα emitting galaxies (LAEs) during the Epoch of Reionization can provide a sensitive probe of the evolving neutral hydrogen gas distribution, thus setting valuable constraints to distinguish different reionization models. In this study, we utilize the new thesan suite of large-volume ($L_\text{box} = 95.5\, \text{cMpc}$) cosmological radiation-hydrodynamic simulations to directly model the Lyα emission from individual galaxies and the subsequent transmission through the intergalactic medium. thesan combines the arepo-rt radiation-hydrodynamic solver with the IllustrisTNG galaxy formation model and includes high- and medium-resolution simulations designed to investigate the impacts of halo-mass-dependent escape fractions, alternative dark matter models, and numerical convergence. We find important differences in the Lyα transmission based on reionization history, bubble morphology, frequency offset from line centre, and galaxy brightness. For a given global neutral fraction, Lyα transmission reduces when low-mass haloes dominate reionization over high-mass haloes. Furthermore, the variation across sightlines for a single galaxy is greater than the variation across all galaxies. This collectively affects the visibility of LAEs, directly impacting observed Lyα luminosity functions (LFs). We employ Gaussian Process Regression using SWIFTEmulator to rapidly constrain an empirical model for dust escape fractions and emergent spectral-line profiles to match observed LFs. We find that dust strongly impacts the Lyα transmission and covering fractions of MUV ≲ −19 galaxies in $M_\text{vir} \gtrsim 10^{11}\, \text{M}_{\bigodot }$ haloes, such that the dominant mode of removing Lyα photons in non-LAEs changes from low-IGM transmission to high dust absorption around z ∼ 7.

     
    more » « less
  2. ABSTRACT We present improved results of the measurement of the correlation between galaxies and the intergalactic medium transmission at the end of reionization. We have gathered a sample of 13 spectroscopically confirmed Lyman-break galaxies (LBGs) and 21 Lyman-α emitters (LAEs) at angular separations 20 arcsec ≲ θ ≲ 10 arcmin (∼0.1–4 pMpc at z ∼ 6) from the sightlines to eight background z ≳ 6 quasars. We report for the first time the detection of an excess of Lyman-α transmission spikes at ∼10–60 cMpc from LAEs (3.2σ) and LBGs (1.9σ). We interpret the data with an improved model of the galaxy–Lyman-α transmission and two-point cross-correlations, which includes the enhanced photoionization due to clustered faint sources, enhanced gas densities around the central bright objects and spatial variations of the mean free path. The observed LAE(LBG)–Lyman-α transmission spike two-point cross-correlation function (2PCCF) constrains the luminosity-averaged escape fraction of all galaxies contributing to reionization to $\langle f_{\rm esc} \rangle _{M_{\rm UV}\lt -12} = 0.14_{-0.05}^{+0.28}\, (0.23_{-0.12}^{+0.46})$. We investigate if the 2PCCF measurement can determine whether bright or faint galaxies are the dominant contributors to reionization. Our results show that a contribution from faint galaxies ($M_{\rm UV} \gt -20 \, (2\sigma)$) is necessary to reproduce the observed 2PCCF and that reionization might be driven by different sub-populations around LBGs and LAEs at z ∼ 6. 
    more » « less
  3. ABSTRACT

    We present the spectroscopic confirmation of the brightest known gravitationally lensed Lyman-break galaxy in the Epoch of Reionization (EoR), A1703-zD1, through the detection of [C ii] 158 $\mu$m at a redshift of z = 6.8269 ± 0.0004. This source was selected behind the strong lensing cluster Abell 1703, with an intrinsic luminosity and a very blue Spitzer/Infrared Array Camera (IRAC) [3.6]–[4.5] colour, implying high equivalent width line emission of [O iii] + Hβ. [C ii] is reliably detected at 6.1σ cospatial with the rest-frame ultraviolet (UV) counterpart, showing similar spatial extent. Correcting for the lensing magnification, the [C ii] luminosity in A1703-zD1 is broadly consistent with the local $L_{\rm [C\, {\small II}]}$–star formation rate (SFR) relation. We find a clear velocity gradient of 103 ± 22 km $\rm s^{-1}$ across the source that possibly indicates rotation or an ongoing merger. We furthermore present spectral scans with no detected [C ii] above 4.6σ in two unlensed Lyman-break galaxies in the Extended Groth Strip (EGS)-Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) field at z ∼ 6.6–6.9. This is the first time that the Northern Extended Millimeter Array (NOEMA) has been successfully used to observe [C ii] in a ‘normal’ star-forming galaxy at z > 6, and our results demonstrate its capability to complement the Atacama Large Millimeter/submillimeter Array (ALMA) in confirming galaxies in the EoR.

     
    more » « less
  4. The escape of radiation from galaxies is a frontier cosmology problem with wide-ranging implications for reionization, galaxy evolution and detection strategies for high-redshift systems. Low- and intermediate-mass galaxies may have played a crucial role in reionization at early times, and by studying their analogues in the local universe, we can test models of radiation escape in galaxies that are more observationally accessible. We present here our cross-sectional analyses of the characteristics of low-redshift galaxies from surveys including KISSR, LARS, and two Green Pea galaxy samples through various computational and visualization techniques. Local systems with measured high (> 0.1) Lyman-alpha escape fractions tend to have high equivalent widths in H-alpha (EWHA) and low Lyman-alpha red-peak velocity. The KISSR systems contain a population, in appearance resembling "purple peas", with potentially steep UV slopes and high EWHA (please see accompanying poster by Olivieri Villalvazo et al. at this meeting). These might represent a population of local starforming galaxies that are more common than, e.g., Green Pea galaxies, that also have potentially high Lyman-alpha, and likely Lyman-continuum, escape. These galaxies could potentially test theoretical models and advance studies of the "first-light" galaxies anticipated from the James Webb Space Telescope through characterizing the underlying physical properties that contribute to radiation leakage. This work was supported by the University of San Francisco (USF) Faculty Development Fund, the USF Student Travel Fund, and by the Undergraduate ALFALFA Team through NSF grant AST-1637339. 
    more » « less
  5. ABSTRACT

    The high-redshift intergalactic medium (IGM) and the primeval galaxy population are rapidly becoming the new frontier of extragalactic astronomy. We investigate the IGM properties and their connection to galaxies at z ≥ 5.5 under different assumptions for the ionizing photon escape and the nature of dark matter, employing our novel thesan radiation-hydrodynamical simulation suite, designed to provide a comprehensive picture of the emergence of galaxies in a full reionization context. Our simulations have realistic ‘late’ reionization histories, match available constraints on global IGM properties, and reproduce the recently observed rapid evolution of the mean free path of ionizing photons. We additionally examine high-z Lyman-α transmission. The optical depth evolution is consistent with data, and its distribution suggests an even-later reionization than simulated, although with a strong sensitivity to the source model. We show that the effects of these two unknowns can be disentangled by characterizing the spectral shape and separation of Lyman-α transmission regions, opening up the possibility to observationally constrain both. For the first time in simulations, thesan reproduces the modulation of the Lyman-α flux as a function of galaxy distance, demonstrating the power of coupling a realistic galaxy formation model with proper radiation hydrodynamics. We find this feature to be extremely sensitive on the timing of reionization, while being relatively insensitive to the source model. Overall, thesan produces a realistic IGM and galaxy population, providing a robust framework for future analysis of the high-z Universe.

     
    more » « less