skip to main content


Title: A Simulation-based Method for Correcting Mode Coupling in CMB Angular Power Spectra
Abstract

Modern cosmic microwave background (CMB) analysis pipelines regularly employ complex time-domain filters, beam models, masking, and other techniques during the production of sky maps and their corresponding angular power spectra. However, these processes can generate couplings between multipoles from the same spectrum and from different spectra, in addition to the typical power attenuation. Within the context of pseudo-Cbased,MASTER-style analyses, the net effect of the time-domain filtering is commonly approximated by a multiplicative transfer function,F, that can fail to capture mode mixing and is dependent on the spectrum of the signal. To address these shortcomings, we have developed a simulation-based spectral correction approach that constructs a two-dimensional transfer matrix,J, which contains information about mode mixing in addition to mode attenuation. We demonstrate the application of this approach on data from the first flight of theSpiderballoon-borne CMB experiment.

 
more » « less
NSF-PAR ID:
10364676
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
928
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
Article No. 109
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We investigate the stellar mass–black hole mass (*BH) relation with type 1 active galactic nuclei (AGNs) down toBH=107M, corresponding to a ≃ −21 absolute magnitude in rest-frame ultraviolet, atz= 2–2.5. Exploiting the deep and large-area spectroscopic survey of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX), we identify 66 type 1 AGNs withBHranging from 107–1010Mthat are measured with single-epoch virial method using Civemission lines detected in the HETDEX spectra.*of the host galaxies are estimated from optical to near-infrared photometric data taken with Spitzer, the Wide-field Infrared Survey Explorer, and ground-based 4–8 m class telescopes byCIGALEspectral energy distribution (SED) fitting. We further assess the validity of SED fitting in two cases by host-nuclear decomposition performed through surface brightness profile fitting on spatially resolved host galaxies with the James Webb Space Telescope/NIRCam CEERS data. We obtain the*BHrelation covering the unexplored low-mass ranges ofBH107108M, and conduct forward modeling to fully account for the selection biases and observational uncertainties. The intrinsic*BHrelation atz∼ 2 has a moderate positive offset of 0.52 ± 0.14 dex from the local relation, suggestive of more efficient black hole growth at higher redshift even in the low-mass regime ofBH107108M. Our*BHrelation is inconsistent with theBHsuppression at the low-*regime predicted by recent hydrodynamic simulations at a 98% confidence level, suggesting that feedback in the low-mass systems may be weaker than those produced in hydrodynamic simulations.

     
    more » « less
  2. Abstract

    We present theDustFilamentscode, a full-sky model for the millimeter Galactic emission of thermal dust. Our model, composed of millions of filaments that are imperfectly aligned with the magnetic field, is able to reproduce the main features of the dust angular power spectra at 353 GHz as measured by the Planck mission. Our model is made up of a population of filaments with sizes following a Pareto distributionLa2.445, with an axis ratio between short and long semiaxesϵ∼ 0.16 and an angle of magnetic field misalignment with a dispersion rms(θLH) = 10°. On large scales, our model follows a Planck-based template. On small scales, our model produces spectra that behave like power laws up to∼ 4000 or smaller scales by considering even smaller filaments, limited only by computing power. We can produce any number of Monte Carlo realizations of small-scale Galactic dust. Our model will allow tests of how the small-scale non-Gaussianity affects CMB weak lensing and the consequences for the measurement of primordial gravitational waves or relativistic light relic species. Our model also can generate frequency decorrelation on the modified blackbody spectrum of dust and is freely adjustable to different levels of decorrelation. This can be used to test the performance of component separation methods and the impact of frequency spectrum residuals on primordialB-mode surveys. The filament density we paint in the sky is also able to reproduce the general level of non-Gaussianities measured by Minkowski functionals in the Planck 353 GHz channel map.

     
    more » « less
  3. Abstract

    Magnetic reconnection is often invoked as a source of high-energy particles, and in relativistic astrophysical systems it is regarded as a prime candidate for powering fast and bright flares. We present a novel analytical model—supported and benchmarked with large-scale three-dimensional kinetic particle-in-cell simulations in electron–positron plasmas—that elucidates the physics governing the generation of power-law energy spectra in relativistic reconnection. Particles with Lorentz factorγ≳ 3σ(here,σis the magnetization) gain most of their energy in the inflow region, while meandering between the two sides of the reconnection layer. Their acceleration time istaccγηrec1ωc120γωc1, whereηrec≃ 0.06 is the inflow speed in units of the speed of light andωc=eB0/mcis the gyrofrequency in the upstream magnetic field. They leave the region of active energization aftertesc, when they get captured by one of the outflowing flux ropes of reconnected plasma. We directly measuretescin our simulations and find thattesctaccforσ≳ few. This leads to a universal (i.e.,σ-independent) power-law spectrumdNfree/dγγ1for the particles undergoing active acceleration, anddN/dγγ2for the overall particle population. Our results help to shed light on the ubiquitous presence of power-law particle and photon spectra in astrophysical nonthermal sources.

     
    more » « less
  4. Abstract

    We present a Keck/MOSFIRE rest-optical composite spectrum of 16 typical gravitationally lensed star-forming dwarf galaxies at 1.7 ≲z≲ 2.6 (zmean= 2.30), all chosen independent of emission-line strength. These galaxies have a median stellar mass oflog(M*/M)med=8.290.43+0.51and a median star formation rate ofSFRHαmed=2.251.26+2.15Myr1. We measure the faint electron-temperature-sensitive [Oiii]λ4363 emission line at 2.5σ(4.1σ) significance when considering a bootstrapped (statistical-only) uncertainty spectrum. This yields a direct-method oxygen abundance of12+log(O/H)direct=7.880.22+0.25(0.150.06+0.12Z). We investigate the applicability at highzof locally calibrated oxygen-based strong-line metallicity relations, finding that the local reference calibrations of Bian et al. best reproduce (≲0.12 dex) our composite metallicity at fixed strong-line ratio. At fixedM*, our composite is well represented by thez∼ 2.3 direct-method stellar mass—gas-phase metallicity relation (MZR) of Sanders et al. When comparing to predicted MZRs from the IllustrisTNG and FIRE simulations, having recalculated our stellar masses with more realistic nonparametric star formation histories(log(M*/M)med=8.920.22+0.31), we find excellent agreement with the FIRE MZR. Our composite is consistent with no metallicity evolution, at fixedM*and SFR, of the locally defined fundamental metallicity relation. We measure the doublet ratio [Oii]λ3729/[Oii]λ3726 = 1.56 ± 0.32 (1.51 ± 0.12) and a corresponding electron density ofne=10+215cm3(ne=10+74cm3) when considering the bootstrapped (statistical-only) error spectrum. This result suggests that lower-mass galaxies have lower densities than higher-mass galaxies atz∼ 2.

     
    more » « less
  5. Abstract

    We present a multiwavelength analysis of the galaxy cluster SPT-CL J0607-4448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope atz= 1.4010 ± 0.0028. The high-redshift cluster shows clear signs of being relaxed with well-regulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra X-ray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The cool-core nature of the cluster is supported by a centrally peaked density profile and low central entropy (K0=189+11keV cm2), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the X-ray data, we find a mass-cooling rateṀcool=10060+90Myr−1. From optical spectroscopy and photometry around the [Oii] emission line, we estimate that the BCG star formation rate isSFR[OII]=1.70.6+1.0Myr−1, roughly two orders of magnitude lower than the predicted mass-cooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet powerPcav=3.21.3+2.1×1044erg s−1, which is consistent with the X-ray cooling luminosity (Lcool=1.90.5+0.2×1044erg s−1withinrcool= 43 kpc). These findings suggest that SPT0607 is a relaxed, cool-core cluster with AGN-regulated cooling at an epoch shortly after cluster formation, implying that the balance between cooling and feedback can be reached quickly. We discuss the implications for these findings on the evolution of AGN feedback in galaxy clusters.

     
    more » « less