skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Well-Posedness for the Dispersive Hunter–Saxton Equation
Abstract This article represents a 1st step toward understanding the well-posedness of the dispersive Hunter–Saxton equation, which arises in the study of nematic liquid crystals. Although the equation has formal similarities with the KdV equation, the lack of $L^2$ control gives it a quasilinear character. Further, the lack of spatial decay obstructs access to dispersive tools, including local smoothing estimates. Here, we give the 1st proof of local and global well-posedness for the Cauchy problem. Secondly, we improve our well-posedness results with respect to the low regularity of the initial data. The key techniques we use include constructing modified energies to realize a normal form analysis in our quasilinear setting, and frequency envelopes to prove continuous dependence with respect to the initial data.  more » « less
Award ID(s):
1928930
PAR ID:
10364954
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2023
Issue:
9
ISSN:
1073-7928
Page Range / eLocation ID:
p. 7883-7924
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study the global well-posedness of the supercritical dissipative surface quasi-geostrophic (SQG) equation, a key model in geophysical fluid dynamics. While local well-posedness is known, achieving global well-posedness for large initial data remains open. Motivated by enhanced decay in radial solutions, we aim to establish global well-posedness for small perturbations of potentially large radial data. Our main result shows that for small perturbations of radial data, the SQG equation admits a unique global solution. 
    more » « less
  2. Abstract We consider the well-posedness of the surface quasi-geostrophic (SQG) front equation. Hunter–Shu–Zhang (2021Pure Appl. Anal.3403–72) established well-posedness under a small data condition as well as a convergence condition on an expansion of the equation’s nonlinearity. In the present article, we establish unconditional large data local well-posedness of the SQG front equation, while also improving the low regularity threshold for the initial data. In addition, we establish global well-posedness theory in the rough data regime by using the testing by wave packet approach of Ifrim–Tataru. 
    more » « less
  3. Abstract We derive a PDE that models the behavior of a boundary layer solution to the incompressible porous media (IPM) equation posed on the 2D periodic half-plane. This 1D IPM model is a transport equation with a non-local velocity similar to the well-known Córdoba–Córdoba–Fontelos (CCF) equation. We discuss how this modification of the CCF equation can be regarded as a reasonable model for solutions to the IPM equation. Working in the class of bounded smooth periodic data, we then show local well-posedness for the 1D IPM model as well as finite time blow-up for a class of initial data. 
    more » « less
  4. Abstract The skew mean curvature flow is an evolution equation forddimensional manifolds embedded in$${\mathbb {R}}^{d+2}$$ R d + 2 (or more generally, in a Riemannian manifold). It can be viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrödinger Map equation. In an earlier paper, the authors introduced a harmonic/Coulomb gauge formulation of the problem, and used it to prove small data local well-posedness in dimensions$$d \geqq 4$$ d 4 . In this article, we prove small data local well-posedness in low-regularity Sobolev spaces for the skew mean curvature flow in dimension$$d\geqq 2$$ d 2 . This is achieved by introducing a new, heat gauge formulation of the equations, which turns out to be more robust in low dimensions. 
    more » « less
  5. Abstract The skew mean curvature flow is an evolution equation forddimensional manifolds embedded in$${{\mathbb {R}}}^{d+2}$$ R d + 2 (or more generally, in a Riemannian manifold). It can be viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrödinger Map equation. In this article, we prove small data local well-posedness in low-regularity Sobolev spaces for the skew mean curvature flow in dimension$$d\ge 4$$ d 4
    more » « less