skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Well-posedness for the surface quasi-geostrophic front equation
Abstract We consider the well-posedness of the surface quasi-geostrophic (SQG) front equation. Hunter–Shu–Zhang (2021Pure Appl. Anal.3403–72) established well-posedness under a small data condition as well as a convergence condition on an expansion of the equation’s nonlinearity. In the present article, we establish unconditional large data local well-posedness of the SQG front equation, while also improving the low regularity threshold for the initial data. In addition, we establish global well-posedness theory in the rough data regime by using the testing by wave packet approach of Ifrim–Tataru.  more » « less
Award ID(s):
2037851
PAR ID:
10500090
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Nonlinearity
Volume:
37
Issue:
5
ISSN:
0951-7715
Format(s):
Medium: X Size: Article No. 055022
Size(s):
Article No. 055022
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study the global well-posedness of the supercritical dissipative surface quasi-geostrophic (SQG) equation, a key model in geophysical fluid dynamics. While local well-posedness is known, achieving global well-posedness for large initial data remains open. Motivated by enhanced decay in radial solutions, we aim to establish global well-posedness for small perturbations of potentially large radial data. Our main result shows that for small perturbations of radial data, the SQG equation admits a unique global solution. 
    more » « less
  2. null (Ed.)
    Abstract We establish global well-posedness and scattering results for the logarithmically energy-supercritical nonlinear wave equation, under the assumption that the initial data satisfies a partial symmetry condition. These results generalize and extend work of Tao in the radially symmetric setting. The techniques involved include weighted versions of Morawetz and Strichartz estimates, with weights adapted to the partial symmetry assumptions. In an appendix, we establish a corresponding quantitative result for the energy-critical problem. 
    more » « less
  3. It is well known that the monotonicity condition, either in Lasry–Lions sense or in displacement sense, is crucial for the global well-posedness of mean field game master equations, as well as for the uniqueness of mean field equilibria and solutions to mean field game systems. In the literature, the monotonicity conditions are always taken in a fixed direction. In this paper, we propose a new type of monotonicity condition in the opposite direction, which we call the anti-monotonicity condition, and establish the global well-posedness for mean field game master equations with non-separable Hamiltonians. Our anti-monotonicity condition allows our data to violate both the Lasry–Lions monotonicity and the displacement monotonicity conditions. 
    more » « less
  4. Abstract We investigate the well-posedness of a class of stochastic second-order in time damped evolution equations in Hilbert spaces, subject to the constraint that the solution lies within the unitary sphere. Then, we focus on a specific example, the stochastic damped wave equation in a bounded domain of ad-dimensional Euclidean space, endowed with the Dirichlet boundary condition, with the added constraint that the$$L^2$$ L 2 -norm of the solution is equal to one. We introduce a small mass$$\mu >0$$ μ > 0 in front of the second-order derivative in time and examine the validity of a Smoluchowski–Kramers diffusion approximation. We demonstrate that, in the small mass limit, the solution converges to the solution of a stochastic parabolic equation subject to the same constraint. We further show that an extra noise-induced drift emerges, which in fact does not account for the Stratonovich-to-Itô correction term. 
    more » « less
  5. Abstract We consider the Cauchy problem for the logarithmically singular surface quasi-geostrophic (SQG) equation, introduced by Ohkitani,$$\begin{aligned} \begin{aligned} \partial _t \theta - \nabla ^\perp \log (10+(-\Delta )^{\frac{1}{2}})\theta \cdot \nabla \theta = 0, \end{aligned} \end{aligned}$$ t θ - log ( 10 + ( - Δ ) 1 2 ) θ · θ = 0 , and establish local existence and uniqueness of smooth solutions in the scale of Sobolev spaces with exponent decreasing with time. Such a decrease of the Sobolev exponent is necessary, as we have shown in the companion paper (Chae et al. in Illposedness via degenerate dispersion for generalized surface quasi-geostrophic equations with singular velocities,arXiv:2308.02120) that the problem is strongly ill-posed in any fixed Sobolev spaces. The time dependence of the Sobolev exponent can be removed when there is a dissipation term strictly stronger than log. These results improve wellposedness statements by Chae et al. (Comm Pure Appl Math 65(8):1037–1066, 2012). This well-posedness result can be applied to describe the long-time dynamics of the$$\delta $$ δ -SQG equations, defined by$$\begin{aligned} \begin{aligned} \partial _t \theta + \nabla ^\perp (10+(-\Delta )^{\frac{1}{2}})^{-\delta }\theta \cdot \nabla \theta = 0, \end{aligned} \end{aligned}$$ t θ + ( 10 + ( - Δ ) 1 2 ) - δ θ · θ = 0 , for all sufficiently small$$\delta >0$$ δ > 0 depending on the size of the initial data. For the same range of$$\delta $$ δ , we establish global well-posedness of smooth solutions to the dissipative SQG equations. 
    more » « less