skip to main content

Title: Close, bright, and boxy: the superluminous SN 2018hti

SN 2018hti was a very nearby (z = 0.0614) superluminous supernova with an exceedingly bright absolute magnitude of −21.7 mag in r band at maximum. The densely sampled pre-maximum light curves of SN 2018hti show a slow luminosity evolution and constrain the rise time to ∼50 rest-frame d. We fitted synthetic light curves to the photometry to infer the physical parameters of the explosion of SN 2018hti for both the magnetar and the CSM-interaction scenarios. We conclude that one of two mechanisms could be powering the luminosity of SN 2018hti; interaction with ∼10 M⊙ of circumstellar material or a magnetar with a magnetic field of Bp∼ 1.3 × 1013 G, and initial period of Pspin∼ 1.8 ms. From the nebular spectrum modelling we infer that SN 2018hti likely results from the explosion of a ${\sim}40\, \mathrm{M}_\odot$ progenitor star.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Award ID(s):
1813825 1911225 1911151
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 4484-4502
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a sample of Type Icn supernovae (SNe Icn), a newly discovered class of transients characterized by their interaction with H- and He-poor circumstellar material (CSM). This sample is the largest collection of SNe Icn to date and includes observations of two published objects (SN 2019hgp and SN 2021csp) and two objects not yet published in the literature (SN 2019jc and SN 2021ckj). The SNe Icn display a range of peak luminosities, rise times, and decline rates, as well as diverse late-time spectral features. To investigate their explosion and progenitor properties, we fit their bolometric light curves to a semianalytical model consisting of luminosity inputs from circumstellar interaction and radioactive decay of56Ni. We infer low ejecta masses (≲2M) and56Ni masses (≲0.04M) from the light curves, suggesting that normal stripped-envelope supernova (SESN) explosions within a dense CSM cannot be the underlying mechanism powering SNe Icn. Additionally, we find that an estimate of the star formation rate density at the location of SN 2019jc lies at the lower end of a distribution of SESNe, in conflict with a massive star progenitor of this object. Based on its estimated ejecta mass,56Ni mass, and explosion site properties, we suggest a low-mass, ultra-strippedmore »star as the progenitor of SN 2019jc. For other SNe Icn, we suggest that a Wolf–Rayet star progenitor may better explain their observed properties. This study demonstrates that multiple progenitor channels may produce SNe Icn and other interaction-powered transients.

    « less
  2. Abstract

    We present photometric and spectroscopic observations of the nearby (D≈ 28 Mpc) interacting supernova (SN) 2019esa, discovered within hours of explosion and serendipitously observed by the Transiting Exoplanet Survey Satellite (TESS). Early, high-cadence light curves from both TESS and the DLT40 survey tightly constrain the time of explosion, and show a 30 day rise to maximum light followed by a near-constant linear decline in luminosity. Optical spectroscopy over the first 40 days revealed a reddened object with narrow Balmer emission lines seen in Type IIn SNe. The slow rise to maximum in the optical light curve combined with the lack of broad Hαemission suggest the presence of very optically thick and close circumstellar material (CSM) that quickly decelerated the SN ejecta. This CSM was likely created from a massive star progenitor with anṀ∼ 0.2Myr−1lost in a previous eruptive episode 3–4 yr before eruption, similar to giant eruptions of luminous blue variable stars. At late times, strong intermediate-width Caii, Fei, and Feiilines are seen in the optical spectra, identical to those seen in the superluminous interacting SN 2006gy. The strong CSM interaction masks the underlying explosion mechanism in SN 2019esa, but the combination of the luminosity,more »strength of the Hαlines, and mass-loss rate of the progenitor seem to be inconsistent with a Type Ia CSM model and instead point to a core-collapse origin.

    « less
  3. Abstract

    Using ultraviolet (UV) light curves, we constrain the circumstellar environments of 1080 Type Ia supernovae (SNe Ia) withinz< 0.5 from archival Galaxy Evolution Explorer (GALEX) observations. All SNe Ia are required to have pre- and post-explosion GALEX observations to ensure adequate subtraction of the host-galaxy flux. Using the late-time GALEX observations, we look for the UV excess expected from any interaction between the SN ejecta and circumstellar material (CSM). Four SNe Ia are detected near maximum light, and we compare the GALEX photometry to archival data. However, we find that none of our targets show convincing evidence of CSM interaction. A recent Hubble Space Telescope (HST) survey estimates that ∼6% of SNe Ia may interact with distant CSM, but statistical inferences are complicated by the small sample size and selection effects. By injecting model light curves into our data and then recovering them, we constrain a broad range of CSM interactions based on the CSM interaction start time and the maximum luminosity. Combining our GALEX nondetections with the HST results, we constrain occurrence of late-onset CSM interaction among SNe Ia with moderate CSM interaction, similar to that observed in PTF11kx, tofCSM≲ 5.1% between 0 and 500 days after discoverymore »and ≲2.7% between 500 and 1000 days after discovery at 90% confidence. For weaker CSM interactions similar to SN 2015cp, we obtain limits of ≲16% and ≲4.8%, respectively, for the same time ranges.

    « less
  4. Abstract

    The CNIa0.02 project aims to collect a complete, nearby sample of Type Ia supernovae (SNe Ia) light curves, and the SNe are volume-limited with host-galaxy redshiftszhost< 0.02. The main scientific goal is to infer the distributions of key properties (e.g., the luminosity function) of local SNe Ia in a complete and unbiased fashion in order to study SN explosion physics. We spectroscopically classify any SN candidate detected by the All-Sky Automated Survey for Supernovae (ASAS-SN) that reaches a peak brightness <16.5 mag. Since ASAS-SN scans the full sky and does not target specific galaxies, our target selection is effectively unbiased by host-galaxy properties. We perform multiband photometric observations starting from the time of discovery. In the first data release (DR1), we present the optical light curves obtained for 247 SNe from our project (including 148 SNe in the complete sample), and we derive parameters such as the peak fluxes, Δm15, andsBV.

  5. Abstract

    A growing number of core-collapse supernovae (SNe) that show evidence for interaction with dense circumstellar medium (CSM) are accompanied by “precursor” optical emission rising weeks to months prior to the explosion. The precursor luminosities greatly exceed the Eddington limit of the progenitor star, implying that they are accompanied by substantial mass loss. Here, we present a semi-analytic model for SN precursor light curves, which we apply to constrain the properties and mechanisms of the pre-explosion mass loss. We explore two limiting mass-loss scenarios: (1) an “eruption” arising from shock breakout following impulsive energy deposition below the stellar surface; and (2) a steady “wind,” due to sustained heating of the progenitor envelope. The eruption model, which resembles a scaled-down version of Type IIP SNe, can explain the luminosities and timescales of well-sampled precursors, for ejecta masses ∼ 0.1–1Mand velocities ∼ 100–1000 km s−1. By contrast, the steady wind scenario cannot explain the highest precursor luminosities ≳ 1041erg s−1, under the constraint that the total ejecta mass does not exceed the entire progenitor mass (though the less luminous SN 2020tlf precursor can be explained by a mass-loss rate ∼ 1Myr−1). However, shock interaction between the wind and pre-existing (earlier ejected) CSMmore »may boost its radiative efficiency and mitigate this constraint. In both the eruption and wind scenarios, the precursor ejecta forms compact (≲1015cm) optically thick CSM at the time of core collapse; though only directly observable via rapid post-explosion spectroscopy (≲ a few days before being overtaken by the SN ejecta), this material can boost the SN luminosity via shock interaction.

    « less