skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tidal Evolution and Diffusive Growth During High-eccentricity Planet Migration: Revisiting the Eccentricity Distribution of Hot Jupiters
Abstract High-eccentricity tidal migration is a potential formation channel for hot Jupiters. During this process, the planetary f-mode may experience a phase of diffusive growth, allowing its energy to quickly build up to large values. In Yu et al., we demonstrated that nonlinear mode interactions between a parent f-mode and daughter f- and p-modes expand the parameter space over which the diffusive growth of the parent is triggered. We extend that study by incorporating (1) the angular momentum transfer between the orbit and the mode, and consequently the evolution of the pericenter distance; (2) a prescription to regulate the nonlinear frequency shift at high parent mode energies; and (3) dissipation of the parent’s energy due to both turbulent convective damping of the daughter modes and strongly nonlinear wave-breaking events. The new ingredients allow us to follow the coupled evolution of the mode and orbit over ≳104yr, covering the diffusive evolution from its onset to its termination. We find that the semimajor axis shrinks by a factor of nearly 10 over 104yr, corresponding to a tidal quality factor 10 . The f-mode’s diffusive growth terminates while the eccentricity is still high, at arounde= 0.8–0.95. Using these results, we revisit the eccentricity distribution of proto-hot Jupiters. We estimate that less than 1 proto-HJ with eccentricity >0.9 should be expected in Kepler's data once the diffusive regime is accounted for, explaining the observed paucity of this population.  more » « less
Award ID(s):
2054353 1909130
PAR ID:
10365200
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
928
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 140
Size(s):
Article No. 140
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hot Jupiters were many of the first exoplanets discovered in the 1990s, but in the decades since their discovery the mysteries surrounding their origins have remained. Here we present nine new hot Jupiters (TOI-1855 b, TOI-2107 b, TOI-2368 b, TOI-3321 b, TOI-3894 b, TOI-3919 b, TOI-4153 b, TOI-5232 b, and TOI-5301 b) discovered by NASA’sTESSmission and confirmed using ground-based imaging and spectroscopy. These discoveries are the first in a series of papers named the Migration and Evolution of giant ExoPlanets survey and are part of an ongoing effort to build a complete sample of hot Jupiters orbiting FGK stars, with a limiting GaiaG-band magnitude of 12.5. This effort aims to use homogeneous detection and analysis techniques to generate a set of precisely measured stellar and planetary properties that is ripe for statistical analysis. The nine planets presented in this work occupy a range of masses (0.55MJ<MP< 3.88MJ) and sizes (0.967RJ<RP< 1.438RJ) and orbit stars that have an effective temperature in the range of 5360 K <Teff< 6860 K with GaiaG-band magnitudes ranging from 11.1 to 12.7. Two of the planets in our sample have detectable orbital eccentricity: TOI-3919 b ( e = 0.259 0.036 + 0.033 ) and TOI-5301 b ( e = 0.33 0.10 + 0.11 ). These eccentric planets join a growing sample of eccentric hot Jupiters that are consistent with high-eccentricity tidal migration, one of the three most prominent theories explaining hot Jupiter formation and evolution. 
    more » « less
  2. Abstract Ultrahot Jupiters (UHJs) are likely doomed by tidal forces to undergo orbital decay and eventual disruption by their stars, but the timescale over which this process unfolds is unknown. We present results from a long-term project to monitor UHJ transits. We recovered WASP-12 b’s orbital decay rate of P ̇ = 29.8 ± 1.6 ms yr−1, in agreement with prior work. Five other systems initially had promising nonlinear transit ephemerides. However, a closer examination of two—WASP-19 b and CoRoT-2 b, both with prior tentative detections—revealed several independent errors with the literature timing data; after correction, neither planet shows signs of orbital decay. Meanwhile, a potential decreasing period for TrES-1 b, P ̇ = 16 ± 5 ms yr−1, corresponds to a tidal quality factor Q = 160 and likely does not result from orbital decay if driven by dissipation within the host star. Nominal period increases in two systems, WASP-121 b and WASP-46 b, rest on a small handful of points. Only 1/43 planets (WASP-12 b) in our sample is experiencing detectable orbital decay. For nearly half (20/42), we can rule out P ̇ as high as observed for WASP-12 b. Thus, while many UHJs could still be experiencing rapid decay that we cannot yet detect, a sizable subpopulation of UHJs are decaying at least an order of magnitude more slowly than WASP-12 b. Our reanalysis of Kepler-1658 b with no new data finds that it remains a promising orbital decay candidate. Finally, we recommend that the scientific community take steps to avoid spurious detections through better management of the multi-decade-spanning data sets needed to search for and study planetary orbital decay. 
    more » « less
  3. Abstract We use 23 yr of astrometric and radial velocity data on the orbit of the star S0-2 to constrain a hypothetical intermediate-mass black hole orbiting the massive black hole Sgr A* at the Galactic center. The data place upper limits on variations of the orientation of the stellar orbit at levels between 0.°02 and 0.°07 per year. We use a combination of analytic estimates and full numerical integrations of the orbit of S0-2 in the presence of a black hole binary. For a companion intermediate-mass black hole outside the orbit of S0-2 (1020 au), we find that a companion black hole with massmcbetween 103and 105Mis excluded, with a boundary behaving as a c m c 1 / 3 . For a companion withac< 1020 au, a black hole with mass between 103and 105Mis excluded, with a c m c 1 / 2 . These bounds arise from quadrupolar perturbations of the orbit of S0-2. Significantly stronger bounds on an inner companion arise from the fact that the location of S0-2 is measured relative to the bright emission of Sgr A* and that separation is perturbed by the “wobble” of Sgr A* about the center of mass between it and the companion. The result is a set of bounds as small as 400Mat 200 au; the numerical simulations suggest a bound from these effects varying as a c m c 1 . We compare and contrast our results with those from a recent analysis by the GRAVITY collaboration. 
    more » « less
  4. Abstract The warm Neptune GJ 3470b transits a nearby (d= 29 pc) bright slowly rotating M1.5-dwarf star. Using spectroscopic observations during two transits with the newly commissioned NEID spectrometer on the WIYN 3.5 m Telescope at Kitt Peak Observatory, we model the classical Rossiter–McLaughlin effect, yielding a sky-projected obliquity of λ = 98 12 + 15 and a v sin i = 0.85 0.33 + 0.27 km s 1 . Leveraging information about the rotation period and size of the host star, our analysis yields a true obliquity of ψ = 95 8 + 9 , revealing that GJ 3470b is on a polar orbit. Using radial velocities from HIRES, HARPS, and the Habitable-zone Planet Finder, we show that the data are compatible with a long-term radial velocity (RV) slope of γ ̇ = 0.0022 ± 0.0011 m s 1 day 1 over a baseline of 12.9 yr. If the RV slope is due to acceleration from another companion in the system, we show that such a companion is capable of explaining the polar and mildly eccentric orbit of GJ 3470b using two different secular excitation models. The existence of an outer companion can be further constrained with additional RV observations, Gaia astrometry, and future high-contrast imaging observations. Lastly, we show that tidal heating from GJ 3470b’s mild eccentricity has most likely inflated the radius of GJ 3470b by a factor of ∼1.5–1.7, which could help account for its evaporating atmosphere. 
    more » « less
  5. Abstract We search NANOGrav’s 12.5 yr data set for evidence of a gravitational-wave background (GWB) with all the spatial correlations allowed by general metric theories of gravity. We find no substantial evidence in favor of the existence of such correlations in our data. We find that scalar-transverse (ST) correlations yield signal-to-noise ratios and Bayes factors that are higher than quadrupolar (tensor-transverse, TT) correlations. Specifically, we find ST correlations with a signal-to-noise ratio of 2.8 that are preferred over TT correlations (Hellings and Downs correlations) with Bayesian odds of about 20:1. However, the significance of ST correlations is reduced dramatically when we include modeling of the solar system ephemeris systematics and/or remove pulsar J0030+0451 entirely from consideration. Even taking the nominal signal-to-noise ratios at face value, analyses of simulated data sets show that such values are not extremely unlikely to be observed in cases where only the usual TT modes are present in the GWB. In the absence of a detection of any polarization mode of gravity, we place upper limits on their amplitudes for a spectral index ofγ= 5 and a reference frequency offyr= 1 yr−1. Among the upper limits for eight general families of metric theories of gravity, we find the values of A TT 95 % = ( 9.7 ± 0.4 ) × 10 16 and A ST 95 % = ( 1.4 ± 0.03 ) × 10 15 for the family of metric spacetime theories that contain both TT and ST modes. 
    more » « less