skip to main content


Title: When BERT meets Bilbo: a learning curve analysis of pretrained language model on disease classification
Abstract Background

Natural language processing (NLP) tasks in the health domain often deal with limited amount of labeled data due to high annotation costs and naturally rare observations. To compensate for the lack of training data, health NLP researchers often have to leverage knowledge and resources external to a task at hand. Recently, pretrained large-scale language models such as the Bidirectional Encoder Representations from Transformers (BERT) have been proven to be a powerful way of learning rich linguistic knowledge from massive unlabeled text and transferring that knowledge to downstream tasks. However, previous downstream tasks often used training data at such a large scale that is unlikely to obtain in the health domain. In this work, we aim to study whether BERT can still benefit downstream tasks when training data are relatively small in the context of health NLP.

Method

We conducted a learning curve analysis to study the behavior of BERT and baseline models as training data size increases. We observed the classification performance of these models on two disease diagnosis data sets, where some diseases are naturally rare and have very limited observations (fewer than 2 out of 10,000). The baselines included commonly used text classification models such as sparse and dense bag-of-words models, long short-term memory networks, and their variants that leveraged external knowledge. To obtain learning curves, we incremented the amount of training examples per disease from small to large, and measured the classification performance in macro-averaged$$F_{1}$$F1score.

Results

On the task of classifying all diseases, the learning curves of BERT were consistently above all baselines, significantly outperforming them across the spectrum of training data sizes. But under extreme situations where only one or two training documents per disease were available, BERT was outperformed by linear classifiers with carefully engineered bag-of-words features.

Conclusion

As long as the amount of training documents is not extremely few, fine-tuning a pretrained BERT model is a highly effective approach to health NLP tasks like disease classification. However, in extreme cases where each class has only one or two training documents and no more will be available, simple linear models using bag-of-words features shall be considered.

 
more » « less
Award ID(s):
1633370
NSF-PAR ID:
10365380
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
BMC Medical Informatics and Decision Making
Volume:
21
Issue:
S9
ISSN:
1472-6947
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The commonsense natural language inference (CNLI) tasks aim to select the most likely follow-up statement to a contextual description of ordinary, everyday events and facts. Current approaches to transfer learning of CNLI models across tasks require many labeled data from the new task. This paper presents a way to reduce this need for additional annotated training data from the new task by leveraging symbolic knowledge bases, such as ConceptNet. We formulate a teacher-student framework for mixed symbolic-neural reasoning, with the large-scale symbolic knowledge base serving as the teacher and a trained CNLI model as the student. This hybrid distillation process involves two steps. The first step is a symbolic reasoning process. Given a collection of unlabeled data, we use an abductive reasoning framework based on Grenander's pattern theory to create weakly labeled data. Pattern theory is an energy-based graphical probabilistic framework for reasoning among random variables with varying dependency structures. In the second step, the weakly labeled data, along with a fraction of the labeled data, is used to transfer-learn the CNLI model into the new task. The goal is to reduce the fraction of labeled data required. We demonstrate the efficacy of our approach by using three publicly available datasets (OpenBookQA, SWAG, and HellaSWAG) and evaluating three CNLI models (BERT, LSTM, and ESIM) that represent different tasks. We show that, on average, we achieve 63% of the top performance of a fully supervised BERT model with no labeled data. With only 1000 labeled samples, we can improve this performance to 72%. Interestingly, without training, the teacher mechanism itself has significant inference power. The pattern theory framework achieves 32.7% accuracy on OpenBookQA, outperforming transformer-based models such as GPT (26.6%), GPT-2 (30.2%), and BERT (27.1%) by a significant margin. We demonstrate that the framework can be generalized to successfully train neural CNLI models using knowledge distillation under unsupervised and semi-supervised learning settings. Our results show that it outperforms all unsupervised and weakly supervised baselines and some early supervised approaches, while offering competitive performance with fully supervised baselines. Additionally, we show that the abductive learning framework can be adapted for other downstream tasks, such as unsupervised semantic textual similarity, unsupervised sentiment classification, and zero-shot text classification, without significant modification to the framework. Finally, user studies show that the generated interpretations enhance its explainability by providing key insights into its reasoning mechanism. 
    more » « less
  2. Abstract

    There has been significant work recently in developing machine learning (ML) models in high energy physics (HEP) for tasks such as classification, simulation, and anomaly detection. Often these models are adapted from those designed for datasets in computer vision or natural language processing, which lack inductive biases suited to HEP data, such as equivariance to its inherent symmetries. Such biases have been shown to make models more performant and interpretable, and reduce the amount of training data needed. To that end, we develop the Lorentz group autoencoder (LGAE), an autoencoder model equivariant with respect to the proper, orthochronous Lorentz group$$\textrm{SO}^+(3,1)$$SO+(3,1), with a latent space living in the representations of the group. We present our architecture and several experimental results on jets at the LHC and find it outperforms graph and convolutional neural network baseline models on several compression, reconstruction, and anomaly detection metrics. We also demonstrate the advantage of such an equivariant model in analyzing the latent space of the autoencoder, which can improve the explainability of potential anomalies discovered by such ML models.

     
    more » « less
  3. Unsupervised text encoding models have recently fueled substantial progress in NLP. The key idea is to use neural networks to convert words in texts to vector space representations based on word positions in a sentence and their contexts, which are suitable for end-to-end training of downstream tasks. We see a strikingly similar situation in spatial analysis, which focuses on incorporating both absolute positions and spatial contexts of geographic objects such as POIs into models. A general-purpose representation model for space is valuable for a multitude of tasks. However, no such general model exists to date beyond simply applying discretization or feed-forward nets to coordinates, and little effort has been put into jointly modeling distributions with vastly different characteristics, which commonly emerges from GIS data. Meanwhile, Nobel Prize-winning Neuroscience research shows that grid cells in mammals provide a multi-scale periodic representation that functions as a metric for location encoding and is critical for recognizing places and for path-integration. Therefore, we propose a representation learning model called Space2Vec to encode the absolute positions and spatial relationships of places. We conduct experiments on two real-world geographic data for two different tasks: 1) predicting types of POIs given their positions and context, 2) image classification leveraging their geo-locations. Results show that because of its multi-scale representations, Space2Vec outperforms well-established ML approaches such as RBF kernels, multi-layer feed-forward nets, and tile embedding approaches for location modeling and image classification tasks. Detailed analysis shows that all baselines can at most well handle distribution at one scale but show poor performances in other scales. In contrast, Space2Vec's multi-scale representation can handle distributions at different scales. 
    more » « less
  4. null (Ed.)
    NLP is currently dominated by language models like RoBERTa which are pretrained on billions of words. But what exact knowledge or skills do Transformer LMs learn from large-scale pretraining that they cannot learn from less data? To explore this question, we adopt five styles of evaluation: classifier probing, information-theoretic probing, unsupervised relative acceptability judgments, unsupervised language model knowledge probing, and fine-tuning on NLU tasks. We then draw learning curves that track the growth of these different measures of model ability with respect to pretraining data volume using the MiniBERTas, a group of RoBERTa models pretrained on 1M, 10M, 100M and 1B words. We find that these LMs require only about 10M to 100M words to learn to reliably encode most syntactic and semantic features we test. They need a much larger quantity of data in order to acquire enough commonsense knowledge and other skills required to master typical downstream NLU tasks. The results suggest that, while the ability to encode linguistic features is almost certainly necessary for language understanding, it is likely that other, unidentified, forms of knowledge are the major drivers of recent improvements in language understanding among large pretrained models. 
    more » « less
  5. Since the introduction of the original BERT (i.e., BASE BERT), researchers have developed various customized BERT models with improved performance for specific domains and tasks by exploiting the benefits of transfer learning. Due to the nature of mathematical texts, which often use domain specific vocabulary along with equations and math symbols, we posit that the development of a new BERT model for mathematics would be useful for many mathematical downstream tasks. In this resource paper, we introduce our multi-institutional effort (i.e., two learning platforms and three academic institutions in the US) toward this need: MathBERT, a model created by pre-training the BASE BERT model on a large mathematical corpus ranging from pre-kindergarten (pre-k), to high-school, to college graduate level mathematical content. In addition, we select three general NLP tasks that are often used in mathematics education: prediction of knowledge component, auto-grading open-ended Q&A, and knowledge tracing, to demonstrate the superiority of MathBERT over BASE BERT. Our experiments show that MathBERT outperforms prior best methods by 1.2-22% and BASE BERT by 2-8% on these tasks. In addition, we build a mathematics specific vocabulary ‘mathVocab’ to train with MathBERT. We discover that MathBERT pre-trained with ‘mathVocab’ outperforms MathBERT trained with the BASE BERT vocabulary (i.e., ‘origVocab’). MathBERT is currently being adopted at the participated leaning platforms: Stride, Inc, a commercial educational resource provider, and ASSISTments.org, a free online educational platform. We release MathBERT for public usage at: https://github.com/tbs17/MathBERT. 
    more » « less