skip to main content


Title: An algorithm for distributed Bayesian inference

Monte Carlo algorithms, such as Markov chain Monte Carlo (MCMC) and Hamiltonian Monte Carlo (HMC), are routinely used for Bayesian inference; however, these algorithms are prohibitively slow in massive data settings because they require multiple passes through the full data in every iteration. Addressing this problem, we develop a scalable extension of these algorithms using the divide‐and‐conquer (D&C) technique that divides the data into a sufficiently large number of subsets, draws parameters in parallel on the subsets using apoweredlikelihood and produces Monte Carlo draws of the parameter by combining parameter draws obtained from each subset. The combined parameter draws play the role of draws from the original sampling algorithm. Our main contributions are twofold. First, we demonstrate through diverse simulated and real data analyses focusing on generalized linear models (GLMs) that our distributed algorithm delivers comparable results as the current state‐of‐the‐art D&C algorithms in terms of statistical accuracy and computational efficiency. Second, providing theoretical support for our empirical observations, we identify regularity assumptions under which the proposed algorithm leads to asymptotically optimal inference. We also provide illustrative examples focusing on normal linear and logistic regressions where parts of our D&C algorithm are analytically tractable.

 
more » « less
Award ID(s):
1854667
NSF-PAR ID:
10365527
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Stat
Volume:
11
Issue:
1
ISSN:
2049-1573
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. McCulloch, R. (Ed.)
    Varying coefficient models (VCMs) are widely used for estimating nonlinear regression functions for functional data. Their Bayesian variants using Gaussian process priors on the functional coefficients, however, have received limited attention in massive data applications, mainly due to the prohibitively slow posterior computations using Markov chain Monte Carlo (MCMC) algorithms. We address this problem using a divide-and-conquer Bayesian approach. We first create a large number of data subsamples with much smaller sizes. Then, we formulate the VCM as a linear mixed-effects model and develop a data augmentation algorithm for obtaining MCMC draws on all the subsets in parallel. Finally, we aggregate the MCMC-based estimates of subset posteriors into a single Aggregated Monte Carlo (AMC) posterior, which is used as a computationally efficient alternative to the true posterior distribution. Theoretically, we derive minimax optimal posterior convergence rates for the AMC posteriors of both the varying coefficients and the mean regression function. We provide quantification on the orders of subset sample sizes and the number of subsets. The empirical results show that the combination schemes that satisfy our theoretical assumptions, including the AMC posterior, have better estimation performance than their main competitors across diverse simulations and in a real data analysis. 
    more » « less
  2. null (Ed.)
    Linear mixed-effects models play a fundamental role in statistical methodology. A variety of Markov chain Monte Carlo (MCMC) algorithms exist for fitting these models, but they are inefficient in massive data settings because every iteration of any such MCMC algorithm passes through the full data. Many divide-and-conquer methods have been proposed to solve this problem, but they lack theoretical guarantees, impose restrictive assumptions, or have complex computational algorithms. Our focus is one such method called the Wasserstein Posterior (WASP), which has become popular due to its optimal theoretical properties under general assumptions. Unfortunately, practical implementation of the WASP either requires solving a complex linear program or is limited to one-dimensional parameters. The former method is inefficient and the latter method fails to capture the joint posterior dependence structure of multivariate parameters. We develop a new algorithm for computing the WASP of multivariate parameters that is easy to implement and is useful for computing the WASP in any model where the posterior distribution of parameter belongs to a location-scatter family of probability measures. The algorithm is introduced for linear mixed-effects models with both implementation details and theoretical properties. Our algorithm outperforms the current state-of-the-art method in inference on the functions of the covariance matrix of the random effects across diverse numerical comparisons. 
    more » « less
  3. Abstract

    In causal inference problems, one is often tasked with estimating causal effects which are analytically intractable functionals of the data‐generating mechanism. Relevant settings include estimating intention‐to‐treat effects in longitudinal problems with missing data or computing direct and indirect effects in mediation analysis. One approach to computing these effects is to use theg‐formula implemented via Monte Carlo integration; when simulation‐based methods such as the nonparametric bootstrap or Markov chain Monte Carlo are used for inference, Monte Carlo integration must be nested within an already computationally intensive algorithm. We develop a widely‐applicable approach to accelerating this Monte Carlo integration step which greatly reduces the computational burden of existingg‐computation algorithms. We refer to our method as acceleratedg‐computation (AGC). The algorithms we present are similar in spirit to multiple imputation, but require removing within‐imputation variance from the standard error rather than adding it. We illustrate the use of AGC on a mediation analysis problem using a beta regression model and in a longitudinal clinical trial subject to nonignorable missingness using a Bayesian additive regression trees model.

     
    more » « less
  4. null (Ed.)
    Variational algorithms have gained prominence over the past two decades as a scalable computational environment for Bayesian inference. In this article, we explore tools from the dynamical systems literature to study the convergence of coordinate ascent algorithms for mean field variational inference. Focusing on the Ising model defined on two nodes, we fully characterize the dynamics of the sequential coordinate ascent algorithm and its parallel version. We observe that in the regime where the objective function is convex, both the algorithms are stable and exhibit convergence to the unique fixed point. Our analyses reveal interesting discordances between these two versions of the algorithm in the region when the objective function is non-convex. In fact, the parallel version exhibits a periodic oscillatory behavior which is absent in the sequential version. Drawing intuition from the Markov chain Monte Carlo literature, we empirically show that a parameter expansion of the Ising model, popularly called the Edward–Sokal coupling, leads to an enlargement of the regime of convergence to the global optima. 
    more » « less
  5. Abstract Exponential random graph models, or ERGMs, are a flexible and general class of models for modeling dependent data. While the early literature has shown them to be powerful in capturing many network features of interest, recent work highlights difficulties related to the models’ ill behavior, such as most of the probability mass being concentrated on a very small subset of the parameter space. This behavior limits both the applicability of an ERGM as a model for real data and inference and parameter estimation via the usual Markov chain Monte Carlo algorithms. To address this problem, we propose a new exponential family of models for random graphs that build on the standard ERGM framework. Specifically, we solve the problem of computational intractability and “degenerate” model behavior by an interpretable support restriction. We introduce a new parameter based on the graph-theoretic notion of degeneracy, a measure of sparsity whose value is commonly low in real-world networks. The new model family is supported on the sample space of graphs with bounded degeneracy and is called degeneracy-restricted ERGMs, or DERGMs for short. Since DERGMs generalize ERGMs—the latter is obtained from the former by setting the degeneracy parameter to be maximal—they inherit good theoretical properties, while at the same time place their mass more uniformly over realistic graphs. The support restriction allows the use of new (and fast) Monte Carlo methods for inference, thus making the models scalable and computationally tractable. We study various theoretical properties of DERGMs and illustrate how the support restriction improves the model behavior. We also present a fast Monte Carlo algorithm for parameter estimation that avoids many issues faced by Markov Chain Monte Carlo algorithms used for inference in ERGMs. 
    more » « less