The study of clouds, i.e., where they occur and what are their characteristics, plays a key role in the understanding of climate change. Clustering is a common machine learning technique used in atmospheric science to classify cloud types. Many parallelism techniques e.g., MPI, OpenMP and Spark, could achieve efficient and scalable clustering of large-scale satellite observation data. In order to understand their differences, this paper studies and compares three different approaches on parallel clustering of satellite observation data. Benchmarking experiments with k-means clustering are conducted with three parallelism techniques, namely OpenMP, OpenMP+MPI, and Spark, on a HPC cluster using up to 16 nodes.
more »
« less
SPEChpc 2021 Benchmark Suites for Modern HPC Systems
The SPEChpc™ 2021 suites are application-based benchmarks designed to measure performance of modern HPC systems. The benchmarks support MPI, MPI+OpenMP, MPI+OpenMP target offload, MPI+OpenACC and are portable across all major HPC platforms.
more »
« less
- Award ID(s):
- 1814609
- PAR ID:
- 10366116
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Companion of the 2022 ACM/SPEC International Conference on Performance Engineering
- Page Range / eLocation ID:
- 15 to 16
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Checkpoint/restart (C/R) provides fault-tolerant computing capability, enables long running applications, and provides scheduling flexibility for computing centers to support diverse workloads with different priority. It is therefore vital to get transparent C/R capability working at NERSC. MANA, by Garg et. al., is a transparent checkpointing tool that has been selected due to its MPI-agnostic and network-agnostic approach. However, originally written as a proof-of-concept code, MANA was not ready to use with NERSC's diverse production workloads, which are dominated by MPI and hybrid MPI+OpenMP applications. In this talk, we present ongoing work at NERSC to enable MANA for NERSC's production workloads, including fixing bugs that were exposed by the top applications at NERSC, adding new features to address system changes, evaluating C/R overhead at scale, etc. The lessons learned from making MANA production-ready for HPC applications will be useful for C/R tool developers, supercomputing centers and HPC end-users alike.more » « less
-
As High Performance Computing (HPC) applications with data security requirements are increasingly moving to execute in the public cloud, there is a demand that the cloud infrastructure for HPC should support privacy and integrity. Incorporating privacy and integrity mechanisms in the communication infrastructure of today's public cloud is challenging because recent advances in the networking infrastructure in data centers have shifted the communication bottleneck from the network links to the network end points and because encryption is computationally intensive. In this work, we consider incorporating encryption to support privacy and integrity in the Message Passing Interface (MPI) library, which is widely used in HPC applications. We empirically study four contemporary cryptographic libraries, OpenSSL, BoringSSL, Libsodium, and CryptoPP using micro-benchmarks and NAS parallel benchmarks to evaluate their overheads for encrypting MPI messages on two different networking technologies, 10Gbps Ethernet and 40Gbps InfiniBand. The results indicate that (1) the performance differs drastically across cryptographic libraries, and (2) effectively supporting privacy and integrity in MPI communications on high speed data center networks is challenging-even with the most efficient cryptographic library, encryption can still introduce very significant overheads in some scenarios such as a single MPI communication operation on InfiniBand, but (3) the overall overhead may not be prohibitive for practical uses since there can be multiple concurrent communications.more » « less
-
The needs of cyberinfrastructure (CI) Users are different from those of CI Contributors. Typically, much of the training in advanced CI addresses developer topics such as MPI, OpenMP, CUDA and application profiling, leaving a gap in training for these users. To remedy this situation, we developed a new program: COMPrehensive Learning for end-users to Effectively utilize CyberinfraStructure (COMPLECS). COMPLECS focuses exclusively on helping CI Users acquire the skills and knowledge they need to efficiently accomplish their compute- and data-intensive research, covering topics such as parallel computing concepts, data management, batch computing, cybersecurity, HPC hardware overview, and high throughput computing.more » « less
-
In this article, we present a four-layer distributed simulation system and its adaptation to the Material Point Method (MPM). The system is built upon a performance portableC++programming model targeting major High-Performance-Computing (HPC) platforms. A key ingredient of our system is a hierarchical block-tile-cell sparse grid data structure that is distributable to an arbitrary number of Message Passing Interface (MPI) ranks. We additionally propose strategies for efficient dynamic load balance optimization to maximize the efficiency of MPI tasks. Our simulation pipeline can easily switch among backend programming models, including OpenMP and CUDA, and can be effortlessly dispatched onto supercomputers and the cloud. Finally, we construct benchmark experiments and ablation studies on supercomputers and consumer workstations in a local network to evaluate the scalability and load balancing criteria. We demonstrate massively parallel, highly scalable, and gigascale resolution MPM simulations of up to 1.01 billion particles for less than 323.25 seconds per frame with 8 OpenSSH-connected workstations.more » « less
An official website of the United States government

