skip to main content


Search for: All records

Award ID contains: 1814609

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 7, 2024
  2. The SPEChpc™ 2021 suites are application-based benchmarks designed to measure performance of modern HPC systems. The benchmarks support MPI, MPI+OpenMP, MPI+OpenMP target offload, MPI+OpenACC and are portable across all major HPC platforms. 
    more » « less
  3. Modern High Performance Computing (HPC) systems are built with innovative system architectures and novel programming models to further push the speed limit of computing. The increased complexity poses challenges for performance portability and performance evaluation. The Standard Performance Evaluation Corporation (SPEC) has a long history of producing industry-standard benchmarks for modern computer systems. SPEC’s newly released SPEChpc 2021 benchmark suites, developed by the High Performance Group, are a bold attempt to provide a fair and objective benchmarking tool designed for stateof-the-art HPC systems. With the support of multiple host and accelerator programming models, the suites are portable across both homogeneous and heterogeneous architectures. Different workloads are developed to fit system sizes ranging from a few compute nodes to a few hundred compute nodes. In this work we present our first experiences in performance benchmarking the new SPEChpc2021 suites and evaluate their portability and basic performance characteristics on various popular and emerging HPC architectures, including x86 CPU, NVIDIA GPU, and AMD GPU. This study provides a first-hand experience of executing the SPEChpc 2021 suites at scale on production HPC systems, discusses real-world use cases, and serves as an initial guideline for using the benchmark suites. 
    more » « less
  4. Due to the recent announcement of the Frontier supercomputer, many scientific application developers are working to make their applications compatible with AMD (CPU-GPU) architectures, which means moving away from the traditional CPU and NVIDIA-GPU systems. Due to the current limitations of profiling tools for AMD GPUs, this shift leaves a void in how to measure application performance on AMD GPUs. In this article, we design an instruction roofline model for AMD GPUs using AMD’s ROCProfiler and a benchmarking tool, BabelStream (the HIP implementation), as a way to measure an application’s performance in instructions and memory transactions on new AMD hardware. Specifically, we create instruction roofline models for a case study scientific application, PIConGPU, an open source particle-in-cell simulations application used for plasma and laser-plasma physics on the NVIDIA V100, AMD Radeon Instinct MI60, and AMD Instinct MI100 GPUs. When looking at the performance of multiple kernels of interest in PIConGPU we find that although the AMD MI100 GPU achieves a similar, or better, execution time compared to the NVIDIA V100 GPU, profiling tool differences make comparing performance of these two architectures hard. When looking at execution time, GIPS, and instruction intensity, the AMD MI60 achieves the worst performance out of the three GPUs used in this work. 
    more » « less