This work presents a multiplicative extended Kalman filter (MEKF) for estimating the relative state of a multirotor vehicle operating in a GPS-denied environment. The filter fuses data from an inertial measurement unit and altimeter with relative-pose updates from a keyframe-based visual odometry or laser scan-matching algorithm. Because the global position and heading states of the vehicle are unobservable in the absence of global measurements such as GPS, the filter in this article estimates the state with respect to a local frame that is colocated with the odometry keyframe. As a result, the odometry update provides nearly direct measurements of the relative vehicle pose, making those states observable. Recent publications have rigorously documented the theoretical advantages of such an observable parameterization, including improved consistency, accuracy, and system robustness, and have demonstrated the effectiveness of such an approach during prolonged multirotor flight tests. This article complements this prior work by providing a complete, self-contained, tutorial derivation of the relative MEKF, which has been thoroughly motivated but only briefly described to date. This article presents several improvements and extensions to the filter while clearly defining all quaternion conventions and properties used, including several new useful properties relating to error quaternions and their Euler-angle decomposition. Finally, this article derives the filter both for traditional dynamics defined with respect to an inertial frame, and for robocentric dynamics defined with respect to the vehicle’s body frame, and provides insights into the subtle differences that arise between the two formulations.
more »
« less
Map-based Visual-Inertial Localization: A Numerical Study
We revisit the problem of efficiently leveraging prior map information within a visual-inertial estimation framework. The use of traditional landmark-based maps with 2D-to-3D measurements along with the recently introduced keyframe-based maps with 2D-to-2D measurements are inves-tigated. The full joint estimation of the prior map is compared within a visual-inertial simulator to the Schmidt-Kalman filter (SKF) and measurement inflation methods in terms of their computational complexity, consistency, accuracy, and memory usage. This study shows that the SKF can enable efficient and consistent estimation for small workspace scenarios and the use of 2D-to-3D landmark maps have the highest levels of accuracy. Keyframe-based 2D-to-2D maps can reduce the required state size while still enabling accuracy gains. Finally, we show that measurement inflation methods, after tuning, can be accurate and efficient for large-scale environments if the guarantee of consistency is relaxed.
more »
« less
- PAR ID:
- 10366167
- Date Published:
- Journal Name:
- 2022 International Conference on Robotics and Automation
- Page Range / eLocation ID:
- 7973-7979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Despite achieving impressive improvement in accuracy, most existing monocular 3D human mesh reconstruction methods require large-scale 2D/3D ground-truths for supervision, which limits their applications on unlabeled in-the-wild data that is ubiquitous. To alleviate the reliance on 2D/3D ground-truths, we present a self-supervised 3D human pose and shape reconstruction framework that relies only on self-consistency between intermediate representations of images and projected 2D predictions. Specifically, we extract 2D joints and depth maps from monocular images as proxy inputs, which provides complementary clues to infer accurate 3D human meshes. Furthermore, to reduce the impacts from noisy and ambiguous inputs while better concentrate on the high-quality information, we design an uncertainty-aware module to automatically learn the reliability of the inputs at body-joint level based on the consistency between 2D joints and depth map. Experiments on benchmark datasets show that our approach outperforms other state-of-the-art methods at similar supervision levels.more » « less
-
Abstract Geometric morphometrics is used in the biological sciences to quantify morphological traits. However, the need for manual landmark placement hampers scalability, which is both time‐consuming, labor‐intensive, and open to human error. The selected landmarks embody a specific hypothesis regarding the critical geometry relevant to the biological question. Any adjustment to this hypothesis necessitates acquiring a new set of landmarks or revising them significantly, which can be impractical for large datasets. There is a pressing need for more efficient and flexible methods for landmark placement that can adapt to different hypotheses without requiring extensive human effort. This study investigates the precision and accuracy of landmarks derived from functional correspondences obtained through the functional map framework of geometry processing. We utilize a deep functional map network to learn shape descriptors, which enable us to achieve functional map‐based and point‐to‐point correspondences between specimens in our dataset. Our methodology involves automating the landmarking process by interrogating these maps to identify corresponding landmarks, using manually placed landmarks from the entire dataset as a reference. We apply our method to a dataset of rodent mandibles and compare its performance to MALPACA's, a standard tool for automatic landmark placement. Our model demonstrates a speed improvement compared to MALPACA while maintaining a competitive level of accuracy. Although MALPACA typically shows the lowest RMSE, our models perform comparably well, particularly with smaller training datasets, indicating strong generalizability. Visual assessments confirm the precision of our automated landmark placements, with deviations consistently falling within an acceptable range for MALPACA estimates. Our results underscore the potential of unsupervised learning models in anatomical landmark placement, presenting a practical and efficient alternative to traditional methods. Our approach saves significant time and effort and provides the flexibility to adapt to different hypotheses about critical geometrical features without the need for manual re‐acquisition of landmarks. This advancement can significantly enhance the scalability and applicability of geometric morphometrics, making it more feasible for large datasets and diverse biological studies.more » « less
-
GPVK-VL: Geometry-Preserving Virtual Keyframes for Visual Localization under Large Viewpoint ChangesVisual localization, the task of determining the position and orientation of a camera, typically involves three core components: offline construction of a keyframe database, efficient online keyframes retrieval, and robust local feature matching. However, significant challenges arise when there are large viewpoint disparities between the query view and the database, such as attempting localization in a corridor previously build from an opposing direction. Intuitively, this issue can be addressed by synthesizing a set of virtual keyframes that cover all viewpoints. However, existing methods for synthesizing novel views to assist localization often fail to ensure geometric accuracy under large viewpoint changes. In this paper, we introduce a confidence-aware geometric prior into 2D Gaussian splatting to ensure the geometric accuracy of the scene. Then we can render novel views through the mesh with clear structures and accurate geometry, even under significant viewpoint changes, enabling the synthesis of a comprehensive set of virtual keyframes. Incorporating this geometry-preserving virtual keyframe database into the localization pipeline significantly enhances the robustness of visual localization.more » « less
-
null (Ed.)Abstract. High-resolution remote sensing imagery has been increasingly used for flood applications. Different methods have been proposed for flood extent mapping from creating water index to image classification from high-resolution data. Among these methods, deep learning methods have shown promising results for flood extent extraction; however, these two-dimensional (2D) image classification methods cannot directly provide water level measurements. This paper presents an integrated approach to extract the flood extent in three-dimensional (3D) from UAV data by integrating 2D deep learning-based flood map and 3D cloud point extracted from a Structure from Motion (SFM) method. We fine-tuned a pretrained Visual Geometry Group 16 (VGG-16) based fully convolutional model to create a 2D inundation map. The 2D classified map was overlaid on the SfM-based 3D point cloud to create a 3D flood map. The floodwater depth was estimated by subtracting a pre-flood Digital Elevation Model (DEM) from the SfM-based DEM. The results show that the proposed method is efficient in creating a 3D flood extent map to support emergency response and recovery activates during a flood event.more » « less
An official website of the United States government

