skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Online learning for multi-agent based resource allocation in weakly coupled wireless systems
We propose and evaluate a learning-based framework to address multi-agent resource allocation in coupled wireless systems. In particular we consider, multiple agents (e.g., base stations, access points, etc.) that choose amongst a set of resource allocation options towards achieving their own performance objective /requirements, and where the performance observed at each agent is further coupled with the actions chosen by the other agents, e.g., through interference, channel leakage, etc. The challenge is to find the best collective action. To that end we propose a Multi-Armed Bandit (MAB) framework wherein the best actions (aka arms) are adaptively learned through online reward feedback. Our focus is on systems which are "weakly-coupled" wherein the best arm of each agent is invariant to others' arm selection the majority of the time - this majority structure enables one to develop light weight efficient algorithms. This structure is commonly found in many wireless settings such as channel selection and power control. We develop a bandit algorithm based on the Track-and-Stop strategy, which shows a logarithmic regret with respect to a genie. Finally through simulation, we exhibit the potential use of our model and algorithm in several wireless application scenarios.  more » « less
Award ID(s):
1910112
PAR ID:
10366199
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Mobihoc '22
Page Range / eLocation ID:
111 to 120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper studies multi-stage systems with end-to-end bandit feedback. In such systems, each job needs to go through multiple stages, each managed by a different agent, before generating an outcome. Each agent can only control its own action and learn the final outcome of the job. It has neither knowledge nor control on actions taken by agents in the next stage. The goal of this paper is to develop distributed online learning algorithms that achieve sublinear regret in adversarial environments. The setting of this paper significantly expands the traditional multi-armed bandit problem, which considers only one agent and one stage. In addition to the exploration-exploitation dilemma in the traditional multi-armed bandit problem, we show that the consideration of multiple stages introduces a third component, education, where an agent needs to choose its actions to facilitate the learning of agents in the next stage. To solve this newly introduced exploration-exploitation-education trilemma, we propose a simple distributed online learning algorithm, ϵ-EXP3. We theoretically prove that the ϵ-EXP3 algorithm is a no-regret policy that achieves sublinear regret. Simulation results show that the ϵ-EXP3 algorithm significantly outperforms existing no-regret online learning algorithms for the traditional multi-armed bandit problem. 
    more » « less
  2. We study a hinted heterogeneous multi-agent multi-armed bandits problem (HMA2B), where agents can query low-cost observations (hints) in addition to pulling arms. In this framework, each of the M agents has a unique reward distribution over K arms, and in T rounds, they can observe the reward of the arm they pull only if no other agent pulls that arm. The goal is to maximize the total utility by querying the minimal necessary hints without pulling arms, achieving time-independent regret. We study HMA2B in both centralized and decentralized setups. Our main centralized algorithm, GP-HCLA, which is an extension of HCLA, uses a central decision-maker for arm-pulling and hint queries, achieving O(M^4 K) regret with O(M K log T) adaptive hints. In decentralized setups, we propose two algorithms, HD-ETC and EBHD-ETC, that allow agents to choose actions independently through collision-based communication and query hints uniformly until stopping, yielding O(M^3 K^2) regret with O(M^3 K log T) hints, where the former requires knowledge of the minimum gap and the latter does not. Finally, we establish lower bounds to prove the optimality of our results and verify them through numerical simulations. 
    more » « less
  3. How can non-communicating agents learn to share congested resources efficiently? This is a challeng- ing task when the agents can access the same resource simultaneously (in contrast to multi-agent multi-armed bandit problems) and the resource valuations differ among agents. We present a fully distributed algorithm for learning to share in congested environments and prove that the agents’ regret with respect to the optimal allocation is poly-logarithmic in the time horizon. Performance in the non-asymptotic regime is illustrated in numerical simulations. The distributed algorithm has applications in cloud computing and spectrum sharing. 
    more » « less
  4. We investigate robust data aggregation in a multi-agent online learning setting. In reality, multiple online learning agents are often deployed to perform similar tasks and receive similar feedback. We study how agents can improve their collective performance by sharing information among each other. In this paper, we formulate the ε-multi-player multi-armed bandit problem, in which a set of M players that have similar reward distributions for each arm play concurrently. We develop an upper confidence bound-based algorithm that adaptively aggregates rewards collected by different players. To our best knowledge, we are the first to develop such a scheme in a multi-player bandit learning setting. We show that under the assumption that pairwise distances between the means of the player-dependent distributions for each arm are small, we improve the (collective) regret bound by nearly a factor of M , in comparison with a baseline algorithm in which the players learn individually using the UCB-1 algorithm (Auer et al., 2002). Our algorithm also exhibits a fallback guarantee, namely, if our task similarity assumption fails to hold, our algorithm still has a performance guarantee that cannot be worse than the baseline by a constant factor. Empirically, we validate our algorithm on synthetic data. 
    more » « less
  5. Scheduling in multi-channel wireless communication system presents formidable challenges in effectively allocating resources. To address these challenges, we investigate a multi-resource restless matching bandit (MR-RMB) model for heterogeneous resource systems with an objective of maximizing long-term discounted total rewards while respecting resource constraints. We have also generalized to applications beyond multi-channel wireless. We discuss the Max-Weight Index Matching algorithm, which optimizes resource allocation based on learned partial indexes. We have derived the policy gradient theorem for index learning. Our main contribution is the introduction of a new Deep Index Policy (DIP), an online learning algorithm tailored for MR-RMB. DIP learns the partial index by leveraging the policy gradient theorem for restless arms with convoluted and unknown transition kernels of heterogeneous resources. We demonstrate the utility of DIP by evaluating its performance for three different MR-RMB problems. Our simulation results show that DIP indeed learns the partial indexes efficiently. 
    more » « less