skip to main content


Title: Motor control beyond reach—how humans hit a target with a whip
Humans are strikingly adept at manipulating complex objects, from tying shoelaces to cracking a bullwhip. These motor skills have highly nonlinear interactive dynamics that defy reduction into parts. Yet, despite advances in data recording and processing, experiments in motor neuroscience still prioritize experimental reduction over realistic complexity. This study embraced the fully unconstrained behaviour of hitting a target with a 1.6-m bullwhip, both in rhythmic and discrete fashion. Adopting an object-centered approach to test the hypothesis that skilled movement simplifies the whip dynamics, the whip's evolution was characterized in relation to performance error and hand speed. Despite widely differing individual strategies, both discrete and rhythmic styles featured a cascade-like unfolding of the whip. Whip extension and orientation at peak hand speed predicted performance error, at least in the rhythmic style, suggesting that humans accomplished the task by setting initial conditions. These insights may inform further studies on human and robot control of complex objects.  more » « less
Award ID(s):
1825942 1723998 1826097
NSF-PAR ID:
10366212
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Royal Society Open Science
Volume:
9
Issue:
10
ISSN:
2054-5703
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While the study of unconstrained movements has revealed important features of neural control, generalizing those insights to more sophisticated object manipulation is challenging. Humans excel at physical interaction with objects, even when those objects introduce complex dynamics and kinematic constraints. This study examined humans turning a horizontal planar crank (radius 10.29 cm) at their preferred and three instructed speeds (with visual feedback), both in clockwise and counterclockwise directions. To explore the role of neuromechanical dynamics, the instructed speeds covered a wide range: fast (near the limits of performance), medium (near preferred speed), and very slow (rendering dynamic effects negligible). Because kinematically constrained movements involve significant physical interaction, disentangling neural control from the influences of biomechanics presents a challenge. To address it, we modeled the interactive dynamics to “subtract off” peripheral biomechanics from observed force and kinematic data, thereby estimating aspects of underlying neural action that may be expressed in terms of motion. We demonstrate the value of this method: remarkably, an approximately elliptical path emerged, and speed minima coincided with curvature maxima, similar to what is seen in unconstrained movements, even though the hand moved at nearly constant speed along a constant-curvature path. These findings suggest that the neural controller takes advantage of peripheral biomechanics to simplify physical interaction. As a result, patterns seen in unconstrained movements persist even when physical interaction prevents their expression in hand kinematics. The reemergence of a speed-curvature relation indicates that it is due, at least in part, to neural processes that emphasize smoothness and predictability. NEW & NOTEWORTHY Physically interacting with kinematic constraints is commonplace in everyday actions. We report a study of humans turning a crank, a circular constraint that imposes constant hand path curvature and hence should suppress variations of hand speed due to the power-law speed-curvature relation widely reported for unconstrained motions. Remarkably, we found that, when peripheral biomechanical factors are removed, a speed-curvature relation reemerges, indicating that it is, at least in part, of neural origin. 
    more » « less
  2. This study examined how humans spontaneously merge a sequence of discrete actions into a rhythmic pattern, even when periodicity is not required. Two experiments used a virtual throwing task, in which subjects performed a long sequence of discrete throwing movements, aiming to hit a virtual target. In experiment 1, subjects performed the task for 11 sessions. Although there was no instruction to perform rhythmically, the variability of the interthrow intervals decreased to a level comparable to that of synchronizing with a metronome; furthermore, dwell times shortened or even disappeared with practice. Floquet multipliers and decreasing variability of the arm trajectories estimated in state space indicated an increasing degree of dynamic stability. Subjects who achieved a higher level of periodicity and stability also displayed higher accuracy in the throwing task. To directly test whether rhythmicity affected performance, experiment 2 disrupted the evolving continuity and periodicity by enforcing a pause between successive throws. This discrete group performed significantly worse and with higher variability in their arm trajectories than the self-paced group. These findings are discussed in the context of previous neuroimaging results showing that rhythmic movements involve significantly fewer cortical and subcortical activations than discrete movements and therefore may pose a computationally more parsimonious solution. Such emerging stable rhythms in neuromotor subsystems may serve as building blocks or dynamic primitives for complex actions. The tendency for humans to spontaneously fall into a rhythm in voluntary movements is consistent with the ubiquity of rhythms at all levels of the physiological system. NEW & NOTEWORTHY When performing a series of throws to hit a target, humans spontaneously merged successive actions into a continuous approximately periodic pattern. The degree of rhythmicity and stability correlated with hitting accuracy. Enforcing irregular pauses between throws to disrupt the rhythm deteriorated performance. Stable rhythmic patterns may simplify control of movement and serve as dynamic primitives for more complex actions. This observation reveals that biological systems tend to exhibit rhythmic behavior consistent with a plethora of physiological processes. 
    more » « less
  3. Tactile sensing has been increasingly utilized in robot control of unknown objects to infer physical properties and optimize manipulation. However, there is limited understanding about the contribution of different sensory modalities during interactive perception in complex interaction both in robots and in humans. This study investigated the effect of visual and haptic information on humans’ exploratory interactions with a ‘cup of coffee’, an object with nonlinear internal dynamics. Subjects were instructed to rhythmically transport a virtual cup with a rolling ball inside between two targets at a specified frequency, using a robotic interface. The cup and targets were displayed on a screen, and force feedback from the cup-andball dynamics was provided via the robotic manipulandum. Subjects were encouraged to explore and prepare the dynamics by “shaking” the cup-and-ball system to find the best initial conditions prior to the task. Two groups of subjects received the full haptic feedback about the cup-and-ball movement during the task; however, for one group the ball movement was visually occluded. Visual information about the ball movement had two distinctive effects on the performance: it reduced preparation time needed to understand the dynamics and, importantly, it led to simpler, more linear input-output interactions between hand and object. The results highlight how visual and haptic information regarding nonlinear internal dynamics have distinct roles for the interactive perception of complex objects. 
    more » « less
  4. Abstract Despite ongoing advances in our understanding of local single-cellular and network-level activity of neuronal populations in the human brain, extraordinarily little is known about their “intermediate” microscale local circuit dynamics. Here, we utilized ultra-high-density microelectrode arrays and a rare opportunity to perform intracranial recordings across multiple cortical areas in human participants to discover three distinct classes of cortical activity that are not locked to ongoing natural brain rhythmic activity. The first included fast waveforms similar to extracellular single-unit activity. The other two types were discrete events with slower waveform dynamics and were found preferentially in upper cortical layers. These second and third types were also observed in rodents, nonhuman primates, and semi-chronic recordings from humans via laminar and Utah array microelectrodes. The rates of all three events were selectively modulated by auditory and electrical stimuli, pharmacological manipulation, and cold saline application and had small causal co-occurrences. These results suggest that the proper combination of high-resolution microelectrodes and analytic techniques can capture neuronal dynamics that lay between somatic action potentials and aggregate population activity. Understanding intermediate microscale dynamics in relation to single-cell and network dynamics may reveal important details about activity in the full cortical circuit. 
    more » « less
  5. Kinesin motor proteins perform several essential cellular functions powered by the adenosine triphosphate (ATP) hydrolysis reaction. Several single-point mutations in the kinesin motor protein KIF5A have been implicated to hereditary spastic paraplegia disease (HSP), a lethal neurodegenerative disease in humans. In earlier studies, we have shown that a series of HSP-related mutations can impair the kinesin’s long-distance displacement or processivity by modulating the order–disorder transition of the linker connecting the heads to the coiled coil. On the other hand, the reduction of kinesin’s ATP hydrolysis reaction rate by a distal asparagine-to-serine mutation is also known to cause HSP disease. However, the molecular mechanism of the ATP hydrolysis reaction in kinesin by this distal mutation is still not fully understood. Using classical molecular dynamics simulations combined with quantum mechanics/molecular mechanics calculations, the pre-organization geometry required for optimal hydrolysis in kinesin motor bound to α/β-tubulin is determined. This optimal geometry has only a single salt-bridge (of the possible two) between Arg203-Glu236, putting a reactive water molecule at a perfect position for hydrolysis. Such geometry is also needed to create the appropriate configuration for proton translocation during ATP hydrolysis. The distal asparagine-to-serine mutation is found to disrupt this optimal geometry. Therefore, the current study along with our previous one demonstrates how two different effects on kinesin dynamics (processivity and ATP hydrolysis), caused by a different set of genotypes, can give rise to the same phenotype leading to HSP disease. 
    more » « less