skip to main content


Title: Robotic Telekinesis: Learning a Robotic Hand Imitator by Watching Humans on Youtube
We build a system that enables any human to control a robot hand and arm, simply by demonstrating motions with their own hand. The robot observes the human operator via a single RGB camera and imitates their actions in real-time. Human hands and robot hands differ in shape, size, and joint structure, and performing this translation from a single uncalibrated camera is a highly underconstrained problem. Moreover, the retargeted trajectories must effectively execute tasks on a physical robot, which requires them to be temporally smooth and free of self-collisions. Our key insight is that while paired human-robot correspondence data is expensive to collect, the internet contains a massive corpus of rich and diverse human hand videos. We leverage this data to train a system that understands human hands and retargets a human video stream into a robot hand-arm trajectory that is smooth, swift, safe, and semantically similar to the guiding demonstration. We demonstrate that it enables previously untrained people to teleoperate a robot on various dexterous manipulation tasks. Our low-cost, glove-free, marker-free remote teleoperation system makes robot teaching more accessible and we hope that it can aid robots that learn to act autonomously in the real world.  more » « less
Award ID(s):
2024594
NSF-PAR ID:
10366293
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Robotics: Science and Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Motivated by the need to improve the quality of life for the elderly and disabled individuals who rely on wheelchairs for mobility, and who may have limited or no hand functionality at all, we propose an egocentric computer vision based co-robot wheelchair to enhance their mobility without hand usage. The robot is built using a commercially available powered wheelchair modified to be controlled by head motion. Head motion is measured by tracking an egocentric camera mounted on the user’s head and faces outward. Compared with previous approaches to hands-free mobility, our system provides a more natural human robot interface because it enables the user to control the speed and direction of motion in a continuous fashion, as opposed to providing a small number of discrete commands. This article presents three usability studies, which were conducted on 37 subjects. The first two usability studies focus on comparing the proposed control method with existing solutions while the third study was conducted to assess the effectiveness of training subjects to operate the wheelchair over several sessions. A limitation of our studies is that they have been conducted with healthy participants. Our findings, however, pave the way for further studies with subjects with disabilities. 
    more » « less
  2. In modern industrial manufacturing processes, robotic manipulators are routinely used in the assembly, packaging, and material handling operations. During production, changing end-of-arm tooling is frequently necessary for process flexibility and reuse of robotic resources. In conventional operation, a tool changer is sometimes employed to load and unload end-effectors, however, the robot must be manually taught to locate the tool changers by operators via a teach pendant. During tool change teaching, the operator takes considerable effort and time to align the master and tool side of the coupler by adjusting the motion speed of the robotic arm and observing the alignment from different viewpoints. In this paper, a custom robotic system, the NeXus, was programmed to locate and change tools automatically via an RGB-D camera. The NeXus was configured as a multi-robot system for multiple tasks including assembly, bonding, and 3D printing of sensor arrays, solar cells, and microrobot prototypes. Thus, different tools are employed by an industrial robotic arm to position grippers, printers, and other types of end-effectors in the workspace. To improve the precision and cycle-time of the robotic tool change, we mounted an eye-in-hand RGB-D camera and employed visual servoing to automate the tool change process. We then compared the teaching time of the tool location using this system and compared the cycle time with those of 6 human operators in the manual mode. We concluded that the tool location time in automated mode, on average, more than two times lower than the expert human operators. 
    more » « less
  3. Generating feasible robot motions in real-time requires achieving multiple tasks (i.e., kinematic requirements) simultaneously. These tasks can have a specific goal, a range of equally valid goals, or a range of acceptable goals with a preference toward a specific goal. To satisfy multiple and potentially competing tasks simultaneously, it is important to exploit the flexibility afforded by tasks with a range of goals. In this paper, we propose a real-time motion generation method that accommodates all three categories of tasks within a single, unified framework and leverages the flexibility of tasks with a range of goals to accommodate other tasks. Our method incorporates tasks in a weighted-sum multiple-objective optimization structure and uses barrier methods with novel loss functions to encode the valid range of a task. We demonstrate the effectiveness of our method through a simulation experiment that compares it to state-of-the-art alternative approaches, and by demonstrating it on a physical camera-in-hand robot that shows that our method enables the robot to achieve smooth and feasible camera motions. 
    more » « less
  4. The growing number of applications in Cyber-Physical Systems (CPS) involving different types of robots while maintaining interoperability and trust is an ongoing challenge faced by traditional centralized systems. This paper presents what is, to the best of our knowledge, the first integration of the Robotic Operating System (ROS) with the Ethereum blockchain using physical robots. We implement a specialized smart contract framework called “Swarm Contracts” that rely on blockchain technology in real-world applications for robotic agents with human interaction to perform collaborative tasks while ensuring trust by motivating the agents with incentives using a token economy with a self-governing structure. The use of open-source technologies, including robot hardware platforms such as TurtleBot3, Universal Robot arm, and ROS, enables the ability to connect a wide range of robot types to the framework we propose. Going beyond simulations, we demonstrate the robustness of the proposed system in real-world conditions with actual hardware robots. 
    more » « less
  5. We investigate how robotic camera systems can offer new capabilities to computer-supported cooperative work through the design, development, and evaluation of a prototype system called Periscope. With Periscope, a local worker completes manipulation tasks with guidance from a remote helper who observes the workspace through a camera mounted on a semi-autonomous robotic arm that is co-located with the worker. Our key insight is that the helper, the worker, and the robot should all share responsibility of the camera view-an approach we call shared camera control. Using this approach, we present a set of modes that distribute the control of the camera between the human collaborators and the autonomous robot depending on task needs. We demonstrate the system's utility and the promise of shared camera control through a preliminary study where 12 dyads collaboratively worked on assembly tasks. Finally, we discuss design and research implications of our work for future robotic camera systems that facilitate remote collaboration.

     
    more » « less