This work presents a novel deep learning architecture called BNU-Net for the purpose of cardiac segmentation based on short-axis MRI images. Its name is derived from the Batch Normalized (BN) U-Net architecture for medical image segmentation. New generations of deep neural networks (NN) are called convolutional NN (CNN). CNNs like U-Net have been widely used for image classification tasks. CNNs are supervised training models which are trained to learn hierarchies of features automatically and robustly perform classification. Our architecture consists of an encoding path for feature extraction and a decoding path that enables precise localization. We compare this approach with a parallel approach named U-Net. Both BNU-Net and U-Net are cardiac segmentation approaches: while BNU-Net employs batch normalization to the results of each convolutional layer and applies an exponential linear unit (ELU) approach that operates as activation function, U-Net does not apply batch normalization and is based on Rectified Linear Units (ReLU). The presented work (i) facilitates various image preprocessing techniques, which includes affine transformations and elastic deformations, and (ii) segments the preprocessed images using the new deep learning architecture. We evaluate our approach on a dataset containing 805 MRI images from 45 patients. The experimental results reveal that our approach accomplishes comparable or better performance than other state-of-the-art approaches in terms of the Dice coefficient and the average perpendicular distance. Index Terms—Magnetic Resonance Imaging; Batch Normalization; Exponential Linear Units
more »
« less
Automatic Segmentation of Sinkholes Using a Convolutional Neural Network
Abstract Sinkholes are the most abundant surface features in karst areas worldwide. Understanding sinkhole occurrences and characteristics is critical for studying karst aquifers and mitigating sinkhole‐related hazards. Most sinkholes appear on the land surface as depressions or cover collapses and are commonly mapped from elevation data, such as digital elevation models (DEMs). Existing methods for identifying sinkholes from DEMs often require two steps: locating surface depressions and separating sinkholes from non‐sinkhole depressions. In this study, we explored deep learning to directly identify sinkholes from DEM data and aerial imagery. A key contribution of our study is an evaluation of various ways of integrating these two types of raster data. We used an image segmentation model, U‐Net, to locate sinkholes. We trained separate U‐Net models based on four input images of elevation data: a DEM image, a slope image, a DEM gradient image, and a DEM‐shaded relief image. Three normalization techniques (Global, Gaussian, and Instance) were applied to improve the model performance. Model results suggest that deep learning is a viable method to identify sinkholes directly from the images of elevation data. In particular, DEM gradient data provided the best input for U‐net image segmentation models to locate sinkholes. The model using the DEM gradient image with Gaussian normalization achieved the best performance with a sinkhole intersection‐over‐union (IoU) of 45.38% on the unseen test set. Aerial images, however, were not useful in training deep learning models for sinkholes as the models using an aerial image as input achieved sinkhole IoUs below 3%.
more »
« less
- Award ID(s):
- 1933779
- PAR ID:
- 10366337
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Earth and Space Science
- Volume:
- 9
- Issue:
- 2
- ISSN:
- 2333-5084
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This work presents a novel deep learning architecture called BNU-Net for the purpose of cardiac segmentation based on short-axis MRI images. Its name is derived from the Batch Normalized (BN) U-Net architecture for medical image segmentation. New generations of deep neural networks (NN) are called convolutional NN (CNN). CNNs like U-Net have been widely used for image classification tasks. CNNs are supervised training models which are trained to learn hierarchies of features automatically and robustly perform classification. Our architecture consists of an encoding path for feature extraction and a decoding path that enables precise localization. We compare this approach with a parallel approach named U-Net. Both BNU-Net and U-Net are cardiac segmentation approaches: while BNU-Net employs batch normalization to the results of each convolutional layer and applies an exponential linear unit (ELU) approach that operates as activation function, U-Net does not apply batch normalization and is based on Rectified Linear Units (ReLU). The presented work (i) facilitates various image preprocessing techniques, which includes affine transformations and elastic deformations, and (ii) segments the preprocessed images using the new deep learning architecture. We evaluate our approach on a dataset containing 805 MRI images from 45 patients. The experimental results reveal that our approach accomplishes comparable or better performance than other state-of-the-art approaches in terms of the Dice coefficient and the average perpendicular distance.more » « less
-
Abstract Computational modeling of cardiovascular function has become a critical part of diagnosing, treating and understanding cardiovascular disease. Most strategies involve constructing anatomically accurate computer models of cardiovascular structures, which is a multistep, time-consuming process. To improve the model generation process, we herein present SeqSeg (sequential segmentation): a novel deep learning-based automatic tracing and segmentation algorithm for constructing image-based vascular models. SeqSeg leverages local U-Net-based inference to sequentially segment vascular structures from medical image volumes. We tested SeqSeg on CT and MR images of aortic and aortofemoral models and compared the predictions to those of benchmark 2D and 3D global nnU-Net models, which have previously shown excellent accuracy for medical image segmentation. We demonstrate that SeqSeg is able to segment more complete vasculature and is able to generalize to vascular structures not annotated in the training data.more » « less
-
null (Ed.)Accurate maps of regional surface water features are integral for advancing ecologic, atmospheric and land development studies. The only comprehensive surface water feature map of Alaska is the National Hydrography Dataset (NHD). NHD features are often digitized representations of historic topographic map blue lines and may be outdated. Here we test deep learning methods to automatically extract surface water features from airborne interferometric synthetic aperture radar (IfSAR) data to update and validate Alaska hydrographic databases. U-net artificial neural networks (ANN) and high-performance computing (HPC) are used for supervised hydrographic feature extraction within a study area comprised of 50 contiguous watersheds in Alaska. Surface water features derived from elevation through automated flow-routing and manual editing are used as training data. Model extensibility is tested with a series of 16 U-net models trained with increasing percentages of the study area, from about 3 to 35 percent. Hydrography is predicted by each of the models for all watersheds not used in training. Input raster layers are derived from digital terrain models, digital surface models, and intensity images from the IfSAR data. Results indicate about 15 percent of the study area is required to optimally train the ANN to extract hydrography when F1-scores for tested watersheds average between 66 and 68. Little benefit is gained by training beyond 15 percent of the study area. Fully connected hydrographic networks are generated for the U-net predictions using a novel approach that constrains a D-8 flow-routing approach to follow U-net predictions. This work demonstrates the ability of deep learning to derive surface water feature maps from complex terrain over a broad area.more » « less
-
Image segmentation is an essential step in biomedical image analysis. In recent years, deep learning models have achieved signi cant success in segmentation. However, deep learning requires the availability of large annotated data to train these models, which can be challenging in biomedical imaging domain. In this paper, we aim to accomplish biomedical image segmentation with limited labeled data using active learning. We present a deep active learning framework that selects additional data points to be annotated by combining U-Net with an efficient and effective query strategy to capture the most uncertain and representative points. This algorithm decouples the representative part by first finding the core points in the unlabeled pool and then selecting the most uncertain points from the reduced pool, which are different from the labeled pool. In our experiment, only 13% of the dataset was required with active learning to outperform the model trained on the entire 2018 MIC- CAI Brain Tumor Segmentation (BraTS) dataset. Thus, active learning reduced the amount of labeled data required for image segmentation without a signi cant loss in the accuracy.more » « less
An official website of the United States government
