Abstract Carrier mobility in doped conjugated polymers is limited by Coulomb interactions with dopant counterions. This complicates studying the effect of the dopant's oxidation potential on carrier generation because different dopants have different Coulomb interactions with polarons on the polymer backbone. Here, dodecaborane (DDB)‐based dopants are used, which electrostatically shield counterions from carriers and have tunable redox potentials at constant size and shape. DDB dopants produce mobile carriers due to spatial separation of the counterion, and those with greater energetic offsets produce more carriers. Neutron reflectometry indicates that dopant infiltration into conjugated polymer films is redox‐potential‐driven. Remarkably, X‐ray scattering shows that despite their large 2‐nm size, DDBs intercalate into the crystalline polymer lamellae like small molecules, indicating that this is the preferred location for dopants of any size. These findings elucidate why doping conjugated polymers usually produces integer, rather than partial charge transfer: dopant counterions effectively intercalate into the lamellae, far from the polarons on the polymer backbone. Finally, it is shown that the IR spectrum provides a simple way to determine polaron mobility. Overall, higher oxidation potentials lead to higher doping efficiencies, with values reaching 100% for driving forces sufficient to dope poorly crystalline regions of the film.
more »
« less
Quantifying Polaron Mole Fractions and Interpreting Spectral Changes in Molecularly Doped Conjugated Polymers
Abstract Molecular doping of conjugated polymers causes bleaching of the neutral absorbance and results in new polaron absorbance transitions in the mid and near infrared. Here, the concentration dependent changes in the spectra for a series of molecularly doped diketopyrrolopyrrole (DPP) co‐polymers with a series of ultra‐high electron affinity cyanotrimethylenecyclopropane‐based dopants is analyzed. With these strong dopants the polaron mole fraction (Θ) reaches saturation. Analysis of the full spectrum enables separation of neutral and polaron signals and quantification of the polaron mole fraction using a simple noninteracting site model. The peak ratios for both neutral and polaron peaks change systematically with increasing polaron mole fraction for all measured polymers. Analysis of the spectral changes indicates that the polaron mole fraction can be quantified to within 5%. While the total change in the absorbance spectrum with increasing polaron mole fraction is linear, the lowest energy polaron peak (P1) grows nonlinearly, which indicates increased polarization/delocalization. Molecular doping of polymers that form either H‐ or J‐aggregates shows systematically different spectral changes in the vibronic peak ratios of the neutral spectra and provides insights into the polymer configuration at undoped sites in the film.
more »
« less
- Award ID(s):
- 1636385
- PAR ID:
- 10366354
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Electronic Materials
- Volume:
- 8
- Issue:
- 4
- ISSN:
- 2199-160X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The mechanism and the nature of the species formed by molecular doping of the model polymer poly(3-hexylthiophene) (P3HT) in its regioregular (rre-) and regiorandom (rra-) forms in solution are investigated for three different dopants: the prototypical π-electron acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), the strong Lewis acid tris(pentafluorophenyl)borane (BCF), and the strongly oxidizing complex molybdenum tris[1-(methoxycarbonyl)-2-(trifluoromethyl)-ethane-1,2-dithiolene] (Mo(tfd-CO2Me)3). In a combined optical and electron paramagnetic resonance study, we show that the doping of rreP3HT in solution occurs by integer charge transfer, resulting in the formation of P3HT radical cations (polarons) for all the dopants considered here. Remarkably, despite the different chemical nature of the dopants and dopant-polymer interaction, the formed polarons exhibit essentially identical optical absorption spectra. The situation is very different for the doping of rraP3HT, where we observe the formation of a charge-transfer complex with F4TCNQ and formation of a “localized” P3HT polaron on non-aggregated chains upon doping with BCF, while there is no indication of dopant-induced species in case of Mo(tfd-CO2Me)3. We estimate the ionization efficiency of the respective dopants for the two polymers in solution and report the molar extinction coefficient spectra of the three different species. Finally, we observe increased spin delocalization in regioregular compared to regiorandom P3HT by electron nuclear double resonance, suggesting that the ability of the charge to delocalize on aggregates of planarized polymer backbones plays a significant role in determining the doping mechanism.more » « less
-
Chemical doping is widely used to manipulate the electrical and thermoelectric properties of organic semiconductors, yet intelligent design of polymer–dopant systems remains elusive. It is challenging to predict the electrical and thermoelectric properties of doped organic semiconductors due to the large number of variables impacting these properties, including film morphology, dopant and polymer energetics, dopant size, and degree of polaron delocalization. Herein, a series of dopants with varying sizes and electron affinities (EAs) are combined with polymers of differing ionization energies (IEs) to investigate how the difference between polymer IE and dopant EA influences the doping efficiency and electrical conductivity, and how the dopant size influences the thermoelectric properties. Our experiments demonstrate that at low doping levels the doping efficiency strongly depends on the difference between the polymer IE and dopant EA; the effectiveness of doping on increasing electrical conductivity drastically decreases at high loadings for the molybdenum dithiolene complexes, while FeCl 3 remains effective at high loadings; and the large molybdenum complexes lead to more delocalized polarons as compared to FeCl 3 . To take advantage of the complementary doping characteristics of the molybdenum complexes and FeCl 3 , both dopants are employed simultaneously to reach high power factors at relatively low dopant concentrations.more » « less
-
Doping is required to increase the electrical conductivity of organic semiconductors for uses in electronic and energy conversion devices. The limited number of commonly used p-type dopants suggests that new dopants or doping mechanisms could improve the efficiency of doping and provide new means for processing doped polymers. Drawing on Lewis acid–base pair chemistry, we combined Lewis acid dopant B(C 6 F 5 ) 3 (BCF) with the weak Lewis base benzoyl peroxide (BPO). The detailed behavior of p-type doping of the model polymer poly(3-hexylthiophene) (P3HT) with this Lewis acid–base pair in solution was examined. Solution 19 F-NMR spectra confirmed the formation of the expected counterion, as well as side products from reactions with solvent. BCF : BPO was also found to efficiently dope a range of semiconducting polymers with varying chemical structures demonstrating that the BCF : BPO combination has an effective electron affinity of at least 5.3 eV. In thin films of regioregular P3HT cast from the doped solutions, delocalized polarons formed due to the large counterions leading to a large polaron-counterion distance. At and above 0.2 eq. BCF : BPO doping, amorphous areas of the film became doped, disrupting the structural order of the films. Despite the change in structural order, thin films of regioregular P3HT doped with 0.2 eq. BCF : BPO had a conductivity of 25 S cm −1 . This study demonstrates the effectiveness of a two-component Lewis acid–base doping mechanism and suggests additional two-component Lewis acid–base chemistries should be explored.more » « less
-
p-Type molecular dopants are a class of high electron affinity (EA) molecules used to ionize organic electronic materials for device applications. It is extremely challenging to ionize high-performance, high-ionization energy (IE) polymers because the dopant molecule needs to be compatible with solution processing. Here, we describe the synthesis and characterization of two new solution processable molecular dopants with the highest EA values yet reported. These molecules, based on the parent hexacyanotrimethylenecyclopropane (CN6-CP) structure, achieve solubility by the substitution of one or more of the cyano groups with esters, which both reduces the volatility relative to CN6-CP and allows for solution processing. The efficacy of these new molecular dopants, which have EA values up to 5.75 eV with respect to vacuum, was tested by performing sequential solution doping experiments with a series of thiophene and alternating diketopyrrolopyrrole polymers with IEs ranging from 5.10 eV to 5.63 eV. For completeness, the new dopant results are compared to a previously reported tri-ester substituted CN6-CP analogue with an EA of 5.50 EV. The increased EA of these stronger dopants induces a 10–100 fold increase in film conductivity and saturation of the conductivity at 15–100 S cm −1 for almost all polymers tested. These new dopant structures enable controlled solution doping at high doping levels for most alternating co-polymers of interest to the organic electronics community.more » « less