skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantitative Analysis of Doping-Induced Polarons and Charge-Transfer Complexes of Poly(3-hexylthiophene) in Solution
The mechanism and the nature of the species formed by molecular doping of the model polymer poly(3-hexylthiophene) (P3HT) in its regioregular (rre-) and regiorandom (rra-) forms in solution are investigated for three different dopants: the prototypical π-electron acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), the strong Lewis acid tris(pentafluorophenyl)borane (BCF), and the strongly oxidizing complex molybdenum tris[1-(methoxycarbonyl)-2-(trifluoromethyl)-ethane-1,2-dithiolene] (Mo(tfd-CO2Me)3). In a combined optical and electron paramagnetic resonance study, we show that the doping of rreP3HT in solution occurs by integer charge transfer, resulting in the formation of P3HT radical cations (polarons) for all the dopants considered here. Remarkably, despite the different chemical nature of the dopants and dopant-polymer interaction, the formed polarons exhibit essentially identical optical absorption spectra. The situation is very different for the doping of rraP3HT, where we observe the formation of a charge-transfer complex with F4TCNQ and formation of a “localized” P3HT polaron on non-aggregated chains upon doping with BCF, while there is no indication of dopant-induced species in case of Mo(tfd-CO2Me)3. We estimate the ionization efficiency of the respective dopants for the two polymers in solution and report the molar extinction coefficient spectra of the three different species. Finally, we observe increased spin delocalization in regioregular compared to regiorandom P3HT by electron nuclear double resonance, suggesting that the ability of the charge to delocalize on aggregates of planarized polymer backbones plays a significant role in determining the doping mechanism.  more » « less
Award ID(s):
1729737
PAR ID:
10169021
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Journal of Physical Chemistry B
ISSN:
1520-6106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Doping is required to increase the electrical conductivity of organic semiconductors for uses in electronic and energy conversion devices. The limited number of commonly used p-type dopants suggests that new dopants or doping mechanisms could improve the efficiency of doping and provide new means for processing doped polymers. Drawing on Lewis acid–base pair chemistry, we combined Lewis acid dopant B(C 6 F 5 ) 3 (BCF) with the weak Lewis base benzoyl peroxide (BPO). The detailed behavior of p-type doping of the model polymer poly(3-hexylthiophene) (P3HT) with this Lewis acid–base pair in solution was examined. Solution 19 F-NMR spectra confirmed the formation of the expected counterion, as well as side products from reactions with solvent. BCF : BPO was also found to efficiently dope a range of semiconducting polymers with varying chemical structures demonstrating that the BCF : BPO combination has an effective electron affinity of at least 5.3 eV. In thin films of regioregular P3HT cast from the doped solutions, delocalized polarons formed due to the large counterions leading to a large polaron-counterion distance. At and above 0.2 eq. BCF : BPO doping, amorphous areas of the film became doped, disrupting the structural order of the films. Despite the change in structural order, thin films of regioregular P3HT doped with 0.2 eq. BCF : BPO had a conductivity of 25 S cm −1 . This study demonstrates the effectiveness of a two-component Lewis acid–base doping mechanism and suggests additional two-component Lewis acid–base chemistries should be explored. 
    more » « less
  2. Katz, Howard E (Ed.)
    Abstract Doping of organic semiconductors has served as an effective method to achieve high electrical conductivity and large thermoelectric power factor. This is of importance to the development of flexible/wearable electronics and green energy‐harvesting technologies. The doping impact of the Lewis acid tris (pentafluorophenyl) borane (BCF) on the thermoelectric performance of poly(2‐(4,4′‐bis(2‐methoxyethoxy)‐5′‐methyl‐[2,2′‐bithiophen]‐5‐yl)‐5‐methylthieno[3,2‐b]thiophene (pgBTTT), a thiophene‐based polymer featuring oligoethylene glycol side chains is investigated. Tetrafluorotetracyanoquinodimethane (F4TCNQ), a well‐established dopant, is utilized as a comparison; however, its inability to co‐dissolve with pgBTTT in less polar solvents hinders the attainment of higher doping levels. Consequently, a comparative study is performed on the thermoelectric behavior of pgBTTT doped with BCF and F4TCNQ at a very low doping level. Subsequent investigation is carried out with BCF at higher doping levels. Remarkably, at 50 wt% BCF doping level, the highest power factor of 223 ± 4 µW m−1K2is achieved with an electrical conductivity of 2180 ± 360 S cm−1and a Seebeck coefficient of 32 ± 1.3 µV K−1. This findings not only contribute valuable insights to the dopant interactions with oxygenated side chain polymers but also open up new avenues for high conductivity thermoelectric polymers in flexible electronic applications. 
    more » « less
  3. There is a critical need to develop a method to pattern semiconducting polymers for device applications on the sub-micrometer scale. Dopant induced solubility control (DISC) patterning is a recently published method for patterning semiconductor polymers that has demonstrated sub-micron resolution. DISC relies on the sequential addition of molecular dopants (here 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ)) to the conjugated polymer. In doped areas, the conjugated polymer is protected from dissolution while in undoped areas, the polymer dissolves into solution. Here we examine factors that affect the resolution of the developed pattern. Two factors are determined to be critical to pattern resolution, the initial crystallinity of the polymer, here poly(3-hexylthiophene) (P3HT), and the quality of the development solvent. We find that dopants diffuse more readily in highly crystalline films than in amorphous films of P3HT and that dopant diffusion reduces the fidelity of the resulting pattern. We also find that the choice of development solvent affects both the fidelity of the pattern and dopant distribution within the patterned polymer domains. Finally, we show that a dopant that diffuses more slowly than F4TCNQ in the P3HT film can be used to pattern the film with higher fidelity. These results together provide a road map for optimizing additive DISC patterning for any polymer/dopant pair. 
    more » « less
  4. Abstract Conjugated polymer‐based block copolymers (CP‐BCPs) are an unexplored class of materials for organic thermoelectrics. Herein, the authors report on the electronic conductivity (σ) and Seebeck coefficient (α) of a newly synthesized CP‐BCP, poly(3‐hexylthiophene)‐block‐poly (oligo‐oxyethylene methacrylate) (P3HT‐b‐POEM), upon solution co‐processing with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and subsequently vapor‐doping with a molecular dopant, 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ). It is found that the addition of the hydrophilic block POEM greatly enhances the processability of P3HT, enabling homogeneous solution‐mixing with LiTFSI. Notably, interactions between P3HT‐b‐POEM with ionic species significantly improve molecular order and unexpectedly cause electrical oxidizing doping of P3HT block both in solution and solid‐states, a phenomenon that has not been previously observed in Li‐salt containing P3HT. Vapor doping of P3HT‐b‐POEM‐LiTFSI thin films with F4TCNQ further enhances σ and yields a thermoelectric power factorPF=α2σ of 13.0 µW m−1 K−2, which is more than 20 times higher than salt‐free P3HT‐b‐POEM sample. Through modeling thermoelectric behaviors of P3HT‐b‐POEM with the Kang‐Snyder transport model, the improvement inPFis attributed to higher electronic charge mobility originating from the enhanced molecular ordering of P3HT. The results demonstrate that solution co‐processing CP‐BCPs with a salt is a powerful method to control structure and performance of organic thermoelectric materials. 
    more » « less
  5. Abstract Carrier mobility in doped conjugated polymers is limited by Coulomb interactions with dopant counterions. This complicates studying the effect of the dopant's oxidation potential on carrier generation because different dopants have different Coulomb interactions with polarons on the polymer backbone. Here, dodecaborane (DDB)‐based dopants are used, which electrostatically shield counterions from carriers and have tunable redox potentials at constant size and shape. DDB dopants produce mobile carriers due to spatial separation of the counterion, and those with greater energetic offsets produce more carriers. Neutron reflectometry indicates that dopant infiltration into conjugated polymer films is redox‐potential‐driven. Remarkably, X‐ray scattering shows that despite their large 2‐nm size, DDBs intercalate into the crystalline polymer lamellae like small molecules, indicating that this is the preferred location for dopants of any size. These findings elucidate why doping conjugated polymers usually produces integer, rather than partial charge transfer: dopant counterions effectively intercalate into the lamellae, far from the polarons on the polymer backbone. Finally, it is shown that the IR spectrum provides a simple way to determine polaron mobility. Overall, higher oxidation potentials lead to higher doping efficiencies, with values reaching 100% for driving forces sufficient to dope poorly crystalline regions of the film. 
    more » « less