Abstract. Mixed-phase clouds affect precipitation and radiation differently from liquid and ice clouds, posing greater challenges to their representation in numerical simulations. Recent laboratory experiments using the Pi Cloud Chamber explored cloud glaciation conditions based on increased injection of ice-nucleating particles. In this study, we use two approaches to reproduce the results of the laboratory experiments: a bulk scalar mixing model and large-eddy simulation (LES) with bin microphysics. The first approach assumes a well-mixed domain to provide an efficient assessment of the mean cloud properties for a wide range of conditions. The second approach resolves the energy-carrying turbulence, the particle size distribution, and their spatial distribution to provide more details. These modeling approaches enable a separate and detailed examination of liquid and ice properties, which is challenging in the laboratory. Both approaches demonstrate that, with an increased ice number concentration, the flow and microphysical properties exhibit the same changes in trends. Additionally, both approaches show that the ice integral radius reaches the theoretical glaciation threshold when the cloud is subsaturated with respect to liquid water. The main difference between the results of the two approaches is that the bulk model allows for the complete glaciation of the cloud. However, LES reveals that, in a dynamic system, the cloud is not completely glaciated as liquid water droplets are continuously produced near the warm lower boundary and subsequently mixed into the chamber interior. These results highlight the importance of the ice mass fraction in distinguishing the mixed-phase clouds and ice clouds.
more »
« less
Impacts of Representing Heterogeneous Distribution of Cloud Liquid and Ice on Phase Partitioning of Arctic Mixed‐Phase Clouds with NCAR CAM5
Abstract In this study, we conduct sensitivity experiments with the Community Atmosphere Model version 5 to understand the impact of representing heterogeneous distribution between cloud liquid and ice on the phase partitioning in mixed‐phase clouds through different perturbations on the Wegener‐Bergeron‐Findeisen (WBF) process. In two experiments, perturbation factors that are based on assumptions of pocket structure and the partial homogeneous cloud volume derived from the High‐performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole‐to‐Pole Observation (HIPPO) campaign are utilized. Alternately, a mass‐weighted assumption is used in the calculation of WBF process to mimic the appearance of unsaturated area in mixed‐phase clouds as the result of heterogeneous distribution. Model experiments are tested in both single column and weather forecast modes and evaluated against data from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program's Mixed‐Phase Arctic Cloud Experiment (M‐PACE) field campaign and long‐term ground‐based multisensor measurements. Model results indicate that perturbations on the WBF process can significantly modify simulated microphysical properties of Arctic mixed‐phase clouds. The improvement of simulated cloud water phase partitioning tends to be linearly proportional to the perturbation magnitude that is applied in the three different sensitivity experiments. Cloud macrophysical properties such as cloud fraction and frequency of occurrence of low‐level mixed‐phase clouds are less sensitive to the perturbation magnitude than cloud microphysical properties. Moreover, this study indicates that heterogeneous distribution between cloud hydrometeors should be treated consistently for all cloud microphysical processes. The model vertical resolution is also important for liquid water maintenance in mixed‐phase clouds.
more »
« less
- PAR ID:
- 10366384
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 124
- Issue:
- 23
- ISSN:
- 2169-897X
- Page Range / eLocation ID:
- p. 13071-13090
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Mixed-phase clouds affect precipitation and radiation forcing differently from liquid and ice clouds, posing greater challenges to their representation in numerical simulations. Recent laboratory experiments using the Pi Cloud Chamber explored cloud glaciation conditions based on increased injection of ice nucleating particles. In this study, we use two approaches to reproduce the results of the laboratory experiments: a bulk scalar mixing model and large-eddy simulation (LES) with bin microphysics. The first approach assumes a well-mixed domain to provide an efficient assessment of the mean cloud properties for a wide range of conditions. The second approach resolves the energy-carrying turbulence, the particle size distribution, and their spatial distribution to provide more details. These modeling approaches enable a separate and detailed examination of liquid and ice properties, which is challenging in the laboratory. Both approaches demonstrate that, with an increased ice number concentration, the flow and microphysical properties exhibit the same changes in trends. Additionally, both approaches show that the ice integral radius reaches the theoretical glaciation threshold when the cloud is subsaturated with respect to liquid water. The main difference between the results of the two approaches is that the bulk model allows for the complete glaciation of the cloud. However, LES reveals that, in a dynamic system, the cloud is not completely glaciated because liquid water droplets are continuously produced near the warm lower boundary and subsequently mixed into the chamber interior. These results highlight the importance of the ice mass fraction in distinguishing the mixed phase and ice clouds.more » « less
-
Abstract. The onset of ice nucleation in mixed-phase clouds determines the lifetime and microphysical properties of ice clouds. In this work, we develop a novel method that differentiates between various phases of mixed-phase clouds, such as clouds dominated by pure liquid or pure ice segments, compared with those having ice crystals surrounded by supercooled liquid water droplets or vice versa. Using this method, we examine the relationship between the macrophysical and microphysical properties of Southern Ocean mixed-phase clouds at −40 to 0 °C (e.g. stratiform and cumuliform clouds) based on the in situ aircraft-based observations during the US National Science Foundation Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) flight campaign. The results show that the exchange between supercooled liquid water and ice crystals from a macrophysical perspective, represented by the increasing spatial ratio of regions containing ice crystals relative to the total in-cloud region (defined as ice spatial ratio), is positively correlated with the phase exchange from a microphysical perspective, represented by the increasing ice water content (IWC), decreasing liquid water content (LWC), increasing ice mass fraction, and increasing ice particle number fraction (IPNF). The mass exchange between liquid and ice becomes more significant during phase 3 when pure ice cloud regions (ICRs) start to appear. Occurrence frequencies of cloud thermodynamic phases show a significant phase change from liquid to ice at a similar temperature (i.e. −17.5 °C) among three types of definitions of mixed-phase clouds based on ice spatial ratio, ice mass fraction, or IPNF. Aerosol indirect effects are quantified for different phases using number concentrations of aerosols greater than 100 or 500 nm (N>100 and N>500, respectively). N>500 shows stronger positive correlations with ice spatial ratios compared with N>100. This result indicates that larger aerosols potentially contain ice-nucleating particles (INPs), which facilitate the formation of ice crystals in mixed-phase clouds. The impact of N>500 is also more significant in phase 2 when ice crystals just start to appear in the mixed phase compared with phase 3 when pure ICRs have formed, possibly due to the competing aerosol indirect effects on primary and secondary ice production in phase 3. The thermodynamic and dynamic conditions are quantified for each phase. The results show stronger in-cloud turbulence and higher updraughts in phases 2 and 3 when liquid and ice coexist compared with pure liquid or ice (phases 1 and 4, respectively). The highest updraughts and turbulence are seen in phase 3 when supercooled liquid droplets are surrounded by ice crystals. These results indicate both updraughts and turbulence support the maintenance of supercooled liquid water amongst ice crystals. Overall, these results illustrate the varying effects of aerosols, thermodynamics, and dynamics through various stages of mixed-phase cloud evolution based on this new method that categorizes cloud phases.more » « less
-
The on-set of ice nucleation in mixed-phase clouds determines cloud lifetime and their microphysical properties. In this work, we develop a novel method that differentiates the early and later transition phases of mixed-phase clouds, i.e., ice crystals are initially surrounded by supercooled liquid water droplets, then as they grow, pure ice segments are formed. Using this method, we examine the relationship between the macrophysical and microphysical properties of mixed-phase clouds. The results show that evolution of cloud macrophysical properties, represented by the increasing spatial ratio of regions containing ice crystals relative to the total in-cloud region (defined as ice spatial ratio), is positively correlated with the evolution of microphysical properties, represented by the increasing ice water content and decreasing liquid water content. The mass partition transition from liquid to ice becomes more significant during the later transition phase (i.e., transition phase 3) when pure ice cloud regions (ICRs) start to appear. Occurrence frequencies of cloud thermodynamic phases show significant transition from liquid to ice at a similar temperature (i.e., -17.5 °C) among three types of definitions of mixed-phase clouds based on ice mass fraction, ice number fraction, or ice spatial ratio. Aerosol indirect effects are quantified for different transition phases using number concentrations of aerosols greater than 100 nm or 500 nm (N>100 and N>500, respectively). N>500 shows stronger positive correlations with ice spatial ratios compared with N>100. This result indicates that larger aerosols potentially contain ice nucleating particles, which facilitate the formation of ice crystals in mixed-phase clouds. The impact of N>500 is also more significant on the earlier transition phase when ice crystals just start to appear compared with the later transition phase. The thermodynamic and dynamic conditions are quantified for each transition phase. The results show in-cloud turbulence as a main mechanism for both the initiation of ice nucleation and the maintenance of supercooled liquid water, while updrafts are important for the latter but not the former. Overall, these results illustrate the varying effects of aerosols, thermodynamics, and dynamics throughout cloud evolution based on this new method that categorizes cloud transition phases.more » « less
-
Abstract Mixed‐phase clouds contribute to substantial uncertainties in global climate models due to their complex microphysical properties. Former model evaluations almost exclusively rely on satellite observations to assess cloud phase distributions globally. This study investigated mixed‐phase cloud properties using near global‐scale in situ observation data sets from 14 flight campaigns in combination with collocated output from a global climate model. The Southern Hemisphere (SH) shows significantly higher occurrence frequencies and higher mass fractions of supercooled liquid water than Northern Hemisphere (NH) based on observations at 0.2 and 100 km horizontal scales. Such hemispheric asymmetry is not captured by the model. The model also consistently overestimates liquid water content (LWC) in all cloud phases but shows ice water content (IWC) biases that vary with phase. Key processes contributing to model biases in phase partition can be identified through the combination of evaluation of phase frequency, liquid mass fraction, LWC and IWC.more » « less
An official website of the United States government
