skip to main content


Title: Photometric Signature of Ultraharmonic Resonances in Barred Galaxies
Abstract

Bars may induce morphological features, such as rings, through their resonances. Previous studies suggested that the presence of “dark gaps,” or regions of a galaxy where the difference between the surface brightness along the bar major axis and that along the bar minor axis is maximal, can be attributed to the location of bar corotation. Here, using GALAKOS, a high-resolutionN-body simulation of a barred galaxy, we test this photometric method’s ability to identify the bar corotation resonance. Contrary to previous work, our results indicate that “dark gaps” are a clear sign of the location of the 4:1 ultraharmonic resonance instead of bar corotation. Measurements of the bar corotation can indirectly be inferred using kinematic information, e.g., by measuring the shape of the rotation curve. We demonstrate our concept on a sample of 578 face-on barred galaxies with both imaging and integral field observations and find that the sample likely consists primarily of fast bars.

 
more » « less
Award ID(s):
2102490
NSF-PAR ID:
10366393
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
929
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 112
Size(s):
["Article No. 112"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We study the bar pattern speeds and corotation radii of 225 barred galaxies, using integral field unit data from MaNGA and the Tremaine–Weinberg method. Our sample, which is divided between strongly and weakly barred galaxies identified via Galaxy Zoo, is the largest that this method has been applied to. We find lower pattern speeds for strongly barred galaxies than for weakly barred galaxies. As simulations show that the pattern speed decreases as the bar exchanges angular momentum with its host, these results suggest that strong bars are more evolved than weak bars. Interestingly, the corotation radius is not different between weakly and strongly barred galaxies, despite being proportional to bar length. We also find that the corotation radius is significantly different between quenching and star-forming galaxies. Additionally, we find that strongly barred galaxies have significantly lower values for $\mathcal {R}$, the ratio between the corotation radius and the bar radius, than weakly barred galaxies, despite a big overlap in both distributions. This ratio classifies bars into ultrafast bars ($\mathcal {R} \lt $ 1.0; 11 per cent of our sample), fast bars (1.0 $\lt \mathcal {R} \lt $ 1.4; 27 per cent), and slow bars ($\mathcal {R} \gt $ 1.4; 62 per cent). Simulations show that $\mathcal {R}$ is correlated with the bar formation mechanism, so our results suggest that strong bars are more likely to be formed by different mechanisms than weak bars. Finally, we find a lower fraction of ultrafast bars than most other studies, which decreases the recently claimed tension with Lambda cold dark matter. However, the median value of $\mathcal {R}$ is still lower than what is predicted by simulations. 
    more » « less
  2. Abstract

    Many barred galaxies exhibit upturns (shoulders) in their bar-major-axis density profile. Simulation studies have suggested that shoulders are supported by loopedx1orbits, occur in growing bars, and can appear after bar buckling. We investigate the orbital support and evolution of shoulders via frequency analyses of orbits in simulations. We confirm that looped orbits are shoulder-supporting, and can remain so, to a lesser extent, after being vertically thickened. We show that looped orbits appear at the resonance ( Ωφ− ΩP)/ΩR= 1/2 (analogous to the classical inner Lindblad resonance, and here called ILR) with vertical-to-radial frequency ratios 1 ≲ ΩzR≲ 3/2 (verticallywarmorbits).Coolorbits at the ILR (those with ΩzR> 3/2) are vertically thin and have no loops, contributing negligibly to shoulders. As bars slow and thicken, either secularly or by buckling, they populate warm orbits at the ILR. Further thickening carries these orbits toward crossing the vertical ILR [vILR, ( Ωφ− ΩP)/Ωz= 1/2], where they convert in-plane motion to vertical motion, become chaotic, kinematically hotter, and less shoulder-supporting. Hence, persistent shoulders require bars to trap new stars, consistent with the need for a growing bar. Since buckling speeds up trapping on warm orbits at the ILR, it can be followed by shoulder formation, as seen in simulations. This sequence supports the recent observational finding that shoulders likely precede the emergence of BP-bulges. The python module for the frequency analysis,naif, is made available.

     
    more » « less
  3. Abstract

    Elongated bar-like features are ubiquitous in galaxies, occurring at the centers of approximately two-thirds of spiral disks in the nearby Universe. Due to gravitational interactions between the bar and the other components of galaxies, it is expected that angular momentum and matter will redistribute over long (Gyr) timescales in barred galaxies. Previous work ignoring the gas phase of galaxies has conclusively demonstrated that bars should slow their rotation over time due to their interaction with dark matter halos. We have performed a simulation of a Milky Way–like galactic disk hosting a strong bar, including a state-of-the-art model of the interstellar medium and a live dark matter halo. In this simulation, the bar pattern does not slow down over time, and instead it remains at a stable, constant rate of rotation. This behavior has been observed in previous simulations using more simplified models for the interstellar gas, but the apparent lack of secular evolution has remained unexplained. We find that the presence of the gas phase arrests the process by which the dark matter halo slows down a bar, a phenomenon we term bar locking. This locking is responsible for stabilizing the bar pattern speed. We find that, in a Milky Way–like disk, a gas fraction of only about 5% is necessary for this mechanism to operate. Our result naturally explains why nearly all observed bars rotate rapidly and is especially relevant for our understanding of how the Milky Way arrived at its present state.

     
    more » « less
  4. ABSTRACT

    Using a volume- and mass-limited (D < 30 Mpc, $\log \, (M_{\star }/M_{\odot })\ge 9.75$) sample of 155 barred S0–Sd galaxies, I determine the fraction with secondary structures within their bars. Some 20 ± 3 per cent have a separate inner bar, making them double-barred; an identical fraction have nuclear rings, with $11^{+3}_{-2}$ per cent hosting both. The inner-bar frequency is a strong, monotonic function of stellar mass: only $4^{+3}_{-2}$ per cent of barred galaxies with $\log \, (M_{\star }/M_{\odot })= 9.75$–10.25 are double-barred, while 47 ± 8 per cent of those with $\log \, (M_{\star }/M_{\odot })\gt 10.5$ are. The nuclear-ring frequency is a strong function of absolute bar size: only $1^{+2}_{-1}$ per cent of bars with semimajor axes <2 kpc have nuclear rings, while $39^{+6}_{-5}$ per cent of larger bars do. Both inner bars and nuclear rings are absent in very late-type (Scd–Sd) galaxies. Inner bar size correlates with galaxy stellar mass, but is clearly offset to smaller sizes from the main population of bars. This makes it possible to define ‘nuclear bars’ in a consistent fashion, based on stellar mass. There are eight single-barred galaxies where the bars are nuclear-bar-sized; some of these may be systems where an outer bar failed to form, or previously double-barred galaxies where the outer bar has dissolved. Inner bar size is even more tightly correlated with host bar size, which is likely the primary driver. In contrast, nuclear ring size is only weakly correlated with galaxy mass or bar size, with more scatter in size than is true of inner bars.

     
    more » « less
  5. Abstract

    Large-scale bars can fuel galaxy centers with molecular gas, often leading to the development of dense ringlike structures where intense star formation occurs, forming a very different environment compared to galactic disks. We pair ∼0.″3 (30 pc) resolution new JWST/MIRI imaging with archival ALMA CO(2–1) mapping of the central ∼5 kpc of the nearby barred spiral galaxy NGC 1365 to investigate the physical mechanisms responsible for this extreme star formation. The molecular gas morphology is resolved into two well-known bright bar lanes that surround a smooth dynamically cold gas disk (Rgal∼ 475 pc) reminiscent of non-star-forming disks in early-type galaxies and likely fed by gas inflow triggered by stellar feedback in the lanes. The lanes host a large number of JWST-identified massive young star clusters. We find some evidence for temporal star formation evolution along the ring. The complex kinematics in the gas lanes reveal strong streaming motions and may be consistent with convergence of gas streamlines expected there. Indeed, the extreme line widths are found to be the result of inter-“cloud” motion between gas peaks;ScousePydecomposition reveals multiple components with line widths of 〈σCO,scouse〉 ≈ 19 km s−1and surface densities ofΣH2,scouse800Mpc2, similar to the properties observed throughout the rest of the central molecular gas structure. Tailored hydrodynamical simulations exhibit many of the observed properties and imply that the observed structures are transient and highly time-variable. From our study of NGC 1365, we conclude that it is predominantly the high gas inflow triggered by the bar that is setting the star formation in its CMZ.

     
    more » « less