skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Orbital Support and Evolution of Flat Profiles of Bars (Shoulders)
Abstract Many barred galaxies exhibit upturns (shoulders) in their bar-major-axis density profile. Simulation studies have suggested that shoulders are supported by loopedx1orbits, occur in growing bars, and can appear after bar buckling. We investigate the orbital support and evolution of shoulders via frequency analyses of orbits in simulations. We confirm that looped orbits are shoulder-supporting, and can remain so, to a lesser extent, after being vertically thickened. We show that looped orbits appear at the resonance ( Ωφ− ΩP)/ΩR= 1/2 (analogous to the classical inner Lindblad resonance, and here called ILR) with vertical-to-radial frequency ratios 1 ≲ ΩzR≲ 3/2 (verticallywarmorbits).Coolorbits at the ILR (those with ΩzR> 3/2) are vertically thin and have no loops, contributing negligibly to shoulders. As bars slow and thicken, either secularly or by buckling, they populate warm orbits at the ILR. Further thickening carries these orbits toward crossing the vertical ILR [vILR, ( Ωφ− ΩP)/Ωz= 1/2], where they convert in-plane motion to vertical motion, become chaotic, kinematically hotter, and less shoulder-supporting. Hence, persistent shoulders require bars to trap new stars, consistent with the need for a growing bar. Since buckling speeds up trapping on warm orbits at the ILR, it can be followed by shoulder formation, as seen in simulations. This sequence supports the recent observational finding that shoulders likely precede the emergence of BP-bulges. The python module for the frequency analysis,naif, is made available.  more » « less
Award ID(s):
2009122
PAR ID:
10462855
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
955
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 38
Size(s):
Article No. 38
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract UsingN-body simulations, we explore the effects of growing a supermassive black hole (SMBH) prior to or during the formation of a stellar bar. Keeping the final mass and growth rate of the SMBH fixed, we show that if it is introduced before or while the bar is still growing, the SMBH does not cause a decrease in bar amplitude. Rather, in most cases, it is strengthened. In addition, an early-growing SMBH always either decreases the buckling amplitude, delays buckling, or both. This weakening of buckling is caused by an increase in the disk vertical velocity dispersion at radii well beyond the nominal black hole sphere of influence. While we find considerable stochasticity and sensitivity to initial conditions, the only case where the SMBH causes a decrease in bar amplitude is when it is introduced after the bar has attained a steady state. In this case, we confirm previous findings that the decrease in bar strength is a result of scattering of bar-supporting orbits with small pericenter radii. By heating the inner disk both radially and vertically, an early-growing SMBH increases the fraction of stars that can be captured by the inner Lindblad resonance (ILR) and the vertical ILR, thereby strengthening both the bar and the boxy-peanut-shaped bulge. Using orbital frequency analysis of star particles, we show that when an SMBH is introduced early and the bar forms around it, the bar is populated by different families of regular bar-supporting orbits than when the bar forms without an SMBH. 
    more » « less
  2. Abstract Barred galaxies exhibit boxy/peanut or X-shapes (BP/X) protruding from their disks in edge-on views. Two types of BP/X morphologies exist depending on whether the X-wings meet at the center (CX) or are off-centered (OX). Orbital studies indicate that various orbital types can generate X-shaped structures. Here we provide a classification approach that identifies the specific orbit families responsible for generating OX- and CX-shaped structures. Applying this approach to three differentN-body bar models, we show that both OX and CX structures are associated with thex1 orbit family, but OX-supporting orbits possess higher angular momentum (closer tox1 orbits) than orbits in CX structures. Consequently, as the bar slows down, the contribution of higher angular momentum OX-supporting orbits decreases and that of lower angular momentum orbits increases, resulting in an evolution of the morphology from OX to CX. If the bar does not slow down, the shape of the BP/X structure and the fractions of OX/CX-supporting orbits remain substantially unchanged. Bars that do not undergo buckling but that do slow down initially show the OX structure and are dominated by high angular momentum orbits, transitioning to a CX morphology. Bars that buckle exhibit a combination of both OX- and CX-supporting orbits immediately after the buckling but become more CX dominated as their pattern speed decreases. This study demonstrates that the evolution of BP/X morphology and orbit populations strongly depends on the evolution of the bar angular momentum. 
    more » « less
  3. Abstract The Galactic bulge is critical to our understanding of the Milky Way. However, due to the lack of reliable stellar distances, the structure and kinematics of the bulge/bar beyond the Galactic center have remained largely unexplored. Here, we present a method to measure distances of luminous red giants using a period–amplitude–luminosity relation anchored to the Large Magellanic Cloud, with random uncertainties of 10%–15% and systematic errors below 1%–2%. We apply this method to data from the Optical Gravitational Lensing Experiment to measure distances to 190,302 stars in the Galactic bulge and beyond out to 20 kpc. Using this sample, we measure a distance to the Galactic center ofR0= 8108 ± 106stat± 93syspc, consistent with direct measurements of stars orbiting Sgr A*. We cross-match our distance catalog with Gaia DR3 and use the subset of 39,566 overlapping stars to provide the first constraints on the Milky Way’s velocity field (VR,Vϕ,Vz) beyond the Galactic center. We show that theVRquadrupole from the bar’s near side is reflected with respect to the Galactic center, indicating that the bar is bisymmetric and aligned with the inner disk. We also find that the vertical heightVZmap has no major structure in the region of the Galactic bulge, which is inconsistent with a current episode of bar buckling. Finally, we demonstrate withN-body simulations that distance uncertainty plays a factor in the alignment of the major and kinematic axes of the bar, necessitating caution when interpreting results for distant stars. 
    more » « less
  4. Abstract The physical mechanisms responsible for bar formation and destruction in galaxies remain a subject of debate. While we have gained valuable insight into how bars form and evolve from isolated idealized simulations, in the cosmological domain, galactic bars evolve in complex environments, with mergers and gas accretion events occurring in the presence of the turbulent interstellar medium with multiple star formation episodes, in addition to coupling with their host galaxies’ dark matter halos. We investigate the bar formation in 13 Milky Way–mass galaxies from the Feedback in Realistic Environments (FIRE-2) cosmological zoom-in simulations. 8 of the 13 simulated galaxies form bars at some point during their history: three from tidal interactions and five from internal evolution of the disk. The bars in FIRE-2 are generally shorter than the corotation radius (mean bar radius ∼1.53 kpc), have a wide range of pattern speeds (36–97 km s−1kpc−1), and live for a wide range of dynamical times (2–160 bar rotations). We find that the bar formation in FIRE-2 galaxies is influenced by satellite interactions and the stellar-to-dark-matter mass ratio in the inner galaxy, but neither is a sufficient condition for bar formation. Bar formation is more likely to occur, with the bars formed being stronger and longer-lived, if the disks are kinematically cold; galaxies with high central gas fractions and/or vigorous star formation, on the other hand, tend to form weaker bars. In the case of the FIRE-2 galaxies, these properties combine to produce ellipsoidal bars with strengthsA2/A0∼ 0.1–0.2. 
    more » « less
  5. Abstract Terahertz spectroscopy of thec‐axis Josephson plasma resonance (JPR) in high‐temperature cuprates is a powerful probe of superconductivity, providing a route to couple to and interact with the condensate. Electromagnetic coupling between metasurface arrays of split ring resonators (SRRs) and the JPR of a La2−xSrxCuO4single crystal (Tc= 32 K) is investigated. The metasurface resonance frequency (ωMM), determined by the SRR geometry, is swept through the JPR frequency (ωJPR= 1.53 THz) using a series of interchangeable tapes applied to the same single crystal. Terahertz reflectivity measurements on the resulting hybrid superconducting metamaterials (HSMMs) reveal anticrossing behavior characteristic of strong coupling. The experimental results, validated with numerical simulations, indicate a normalized Rabi frequency of ΩR= 0.29. Further, it is shown that HSMMs with ωMM> ωJPRprovide a route to couple to hyperbolic waveguide modes inc‐axis cuprate samples. This work informs future possibilities for optimizing the coupling strength of HSMMs and investigating nonlinear superconductivity under high field terahertz excitation. 
    more » « less