skip to main content

Title: Historical forest disturbance mediates soil microbial community responses to drought

Despite the abundance of studies demonstrating the effects of drought on soil microbial communities, the role of land use legacies in mediating these drought effects is unclear. To assess historical land use influences on microbial drought responses, we conducted a drought‐rewetting experiment in soils from two adjacent and currently forested watersheds with distinct land use histories: an undisturbed ‘reference’ site and a ‘disturbed’ site that was clear‐cut and converted to agriculture ~60 years prior. We incubated intact soil cores at either constant moisture or under a drought‐rewet treatment and characterized bacterial and fungal communities using amplicon sequencing throughout the experiment. Bacterial alpha diversity decreased following drought‐rewetting while fungal diversity increased. Bacterial beta diversity also changed markedly following drought‐rewetting, especially in historically disturbed soils, while fungal beta diversity exhibited little response. Additionally, bacterial beta diversity in disturbed soils recovered less from drought‐rewetting compared with reference soils. Disturbed soil communities also exhibited notable reductions in nitrifying taxa, increases in putative r‐selected bacteria, and reductions in network connectivity following drought‐rewetting. Overall, our study reveals historical land use to be important in mediating responses of soil bacterial communities to drought, which will influence the ecosystem‐scale trajectories of these environments under ongoing and future climate change.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Environmental Microbiology
Page Range / eLocation ID:
p. 6405-6419
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Land use change has long-term effects on the structure of soil microbial communities, but the specific community assembly processes underlying these effects have not been identified. To investigate effects of historical land use on microbial community assembly, we sampled soils from several currently forested watersheds representing different historical land management regimes (e.g., undisturbed reference, logged, converted to agriculture). We characterized bacterial and fungal communities using amplicon sequencing and used a null model approach to quantify the relative importance of selection, dispersal, and drift processes on bacterial and fungal community assembly. We found that bacterial communities were structured by both selection and neutral (i.e., dispersal and drift) processes, while fungal communities were structured primarily by neutral processes. For both bacterial and fungal communities, selection was more important in historically disturbed soils compared with adjacent undisturbed sites, while dispersal processes were more important in undisturbed soils. Variation partitioning identified the drivers of selection to be changes in vegetation communities and soil properties (i.e., soil N availability) that occur following forest disturbance. Overall, this study casts new light on the effects of historical land use on soil microbial communities by identifying specific environmental factors that drive changes in community assembly.

    more » « less
  2. Abstract

    Land-use change is highly dynamic globally and there is great uncertainty about the effects of land-use legacies on contemporary environmental performance. We used a chronosequence of urban grasslands (lawns) that were converted from agricultural and forested lands from 10 to over 130 years prior to determine if land-use legacy influences components of soil biodiversity and composition over time. We used historical aerial imagery to identify sites in Baltimore County, MD (USA) with agricultural versus forest land-use history. Soil samples were taken from these sites as well as from existing well-studied agricultural and forest sites used as historical references by the National Science Foundation Long-Term Ecological Research Baltimore Ecosystem Study program. We found that the microbiomes in lawns of agricultural origin were similar to those in agricultural reference sites, which suggests that the ecological parameters on lawns and reference agricultural systems are similar in how they influence soil microbial community dynamics. In contrast, lawns that were previously forest showed distinct shifts in soil bacterial composition upon recent conversion but reverted back in composition similar to forest soils as the lawns aged over decades. Soil fungal communities shifted after forested land was converted to lawns, but unlike bacterial communities, did not revert in composition over time. Our results show that components of bacterial biodiversity and composition are resistant to change in previously forested lawns despite urbanization processes. Therefore land-use legacy, depending on the prior use, is an important factor to consider when examining urban ecological homogenization.

    more » « less
  3. Abstract

    Despite ever‐increasing availability of detailed information about microbial community structure, relationships of microbial diversity with ecosystem functioning remain unclear. We investigated these relationships at the Coweeta Hydrologic Laboratory, where past forest disturbances (e.g., clear‐cut) have altered both ecosystem processes (e.g., increased N export) and microbial communities (e.g., increased bacterial diversity). We sampled soils from disturbed and adjacent reference forests, characterized resident microbial communities, and measured several microbial C‐cycle and N‐cycle process rates. Microbial communities from historically disturbed soils exhibited altered ecosystem functioning, including generally higher rates of C‐ and N‐cycle processes. Disturbed soil microbial communities also exhibited altered ecosystem multifunctionality, a composite variable consisting of all measured process rates as well as extracellular enzyme activities. Although we found few relationships between ecosystem functions and microbial alpha diversity, all functions were correlated with microbial community composition metrics, particularly r:K strategist ratios of bacterial phyla. Additionally, for both ecosystem multifunctionality and specific processes (i.e., C‐ and N‐mineralization), microbial metrics significantly improved models seeking to explain variation in process rates. Our work sheds light on the links between microbial communities and ecosystem functioning and identifies specific microbial metrics important for modeling ecosystem responses to environmental change.

    more » « less
  4. Abstract

    Spatially overdispersed mounds of fungus‐farming termites (Macrotermitinae) are hotspots of nutrient availability and primary productivity in tropical savannas, creating spatial heterogeneity in communities and ecosystem functions. These termites influence the local availability of nutrients in part by redistributing nutrients across the landscape, but the links between termite ecosystem engineering and the soil microbes that are the metabolic agents of nutrient cycling are little understood. We used DNA metabarcoding of soils fromOdontotermes montanusmounds to examine the influence of termites on soil microbial communities in a semi‐arid Kenyan savanna. We found that bacterial and fungal communities were compositionally distinct in termite‐mound topsoils relative to the surrounding savanna, and that bacterial communities were more diverse on mounds. The higher microbial alpha and beta diversity associated with mounds created striking spatial patterning in microbial community composition, and boosted landscape‐scale microbial richness and diversity. Selected enzyme assays revealed consistent differences in potential enzymatic activity, suggesting links between termite‐induced heterogeneity in microbial community composition and the spatial distribution of ecosystem functions. We conducted a large‐scale field experiment in which we attempted to simulate termites’ effects on microbes by fertilizing mound‐sized patches; this altered both bacterial and fungal communities, but in a different way than natural mounds. Elevated levels of inorganic nitrogen, phosphorus and potassium may help to explain the distinctive fungal communities in termite‐mound soils, but cannot account for the distinctive bacterial communities associated with mounds.

    more » « less
  5. Introduction Soil microbial communities, including biological soil crust microbiomes, play key roles in water, carbon and nitrogen cycling, biological weathering, and other nutrient releasing processes of desert ecosystems. However, our knowledge of microbial distribution patterns and ecological drivers is still poor, especially so for the Chihuahuan Desert. Methods This project investigated the effects of trampling disturbance on surface soil microbiomes, explored community composition and structure, and related patterns to abiotic and biotic landscape characteristics within the Chihuahuan Desert biome. Composite soil samples were collected in disturbed and undisturbed areas of 15 long-term ecological research plots in the Jornada Basin, New Mexico. Microbial diversity of cross-domain microbial groups (total Bacteria, Cyanobacteria, Archaea, and Fungi) was obtained via DNA amplicon metabarcode sequencing. Sequence data were related to landscape characteristics including vegetation type, landforms, ecological site and state as well as soil properties including gravel content, soil texture, pH, and electrical conductivity. Results Filamentous Cyanobacteria dominated the photoautotrophic community while Proteobacteria and Actinobacteria dominated among the heterotrophic bacteria. Thaumarchaeota were the most abundant Archaea and drought adapted taxa in Dothideomycetes and Agaricomycetes were most abundant fungi in the soil surface microbiomes. Apart from richness within Archaea ( p  = 0.0124), disturbed samples did not differ from undisturbed samples with respect to alpha diversity and community composition ( p  ≥ 0.05), possibly due to a lack of frequent or impactful disturbance. Vegetation type and landform showed differences in richness of Bacteria, Archaea, and Cyanobacteria but not in Fungi. Richness lacked strong relationships with soil variables. Landscape features including parent material, vegetation type, landform type, and ecological sites and states, exhibited stronger influence on relative abundances and microbial community composition than on alpha diversity, especially for Cyanobacteria and Fungi. Soil texture, moisture, pH, electrical conductivity, lichen cover, and perennial plant biomass correlated strongly with microbial community gradients detected in NMDS ordinations. Discussion Our study provides first comprehensive insights into the relationships between landscape characteristics, associated soil properties, and cross-domain soil microbiomes in the Chihuahuan Desert. Our findings will inform land management and restoration efforts and aid in the understanding of processes such as desertification and state transitioning, which represent urgent ecological and economical challenges in drylands around the world. 
    more » « less