skip to main content


Title: Spatial patterning of soil microbial communities created by fungus‐farming termites
Abstract

Spatially overdispersed mounds of fungus‐farming termites (Macrotermitinae) are hotspots of nutrient availability and primary productivity in tropical savannas, creating spatial heterogeneity in communities and ecosystem functions. These termites influence the local availability of nutrients in part by redistributing nutrients across the landscape, but the links between termite ecosystem engineering and the soil microbes that are the metabolic agents of nutrient cycling are little understood. We used DNA metabarcoding of soils fromOdontotermes montanusmounds to examine the influence of termites on soil microbial communities in a semi‐arid Kenyan savanna. We found that bacterial and fungal communities were compositionally distinct in termite‐mound topsoils relative to the surrounding savanna, and that bacterial communities were more diverse on mounds. The higher microbial alpha and beta diversity associated with mounds created striking spatial patterning in microbial community composition, and boosted landscape‐scale microbial richness and diversity. Selected enzyme assays revealed consistent differences in potential enzymatic activity, suggesting links between termite‐induced heterogeneity in microbial community composition and the spatial distribution of ecosystem functions. We conducted a large‐scale field experiment in which we attempted to simulate termites’ effects on microbes by fertilizing mound‐sized patches; this altered both bacterial and fungal communities, but in a different way than natural mounds. Elevated levels of inorganic nitrogen, phosphorus and potassium may help to explain the distinctive fungal communities in termite‐mound soils, but cannot account for the distinctive bacterial communities associated with mounds.

 
more » « less
NSF-PAR ID:
10454260
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
29
Issue:
22
ISSN:
0962-1083
Page Range / eLocation ID:
p. 4487-4501
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Both termites and large mammalian herbivores (LMH) are savanna ecosystem engineers that have profound impacts on ecosystem structure and function. Both of these savanna engineers modulate many common and shared dietary resources such as woody and herbaceous plant biomass, yet few studies have addressed how they impact one another. In particular, it is unclear how herbivores may influence the abundance of long‐lived termite mounds via changes in termite dietary resources such as woody and herbaceous biomass. While it has long been assumed that abundance and areal cover of termite mounds in the landscape remain relatively stable, most data are observational, and few experiments have tested how termite mound patterns may respond to biotic factors such as changes in large herbivore communities. Here, we use a broad tree density gradient and two landscape‐scale experimental manipulations—the first a multi‐guild large herbivore exclosure experiment (20 years after establishment) and the second a tree removal experiment (8 years after establishment)—to demonstrate that patterns inOdontotermestermite mound abundance and cover are unexpectedly dynamic. Termite mound abundance, but areal cover not significantly, is positively associated with experimentally controlled presence of cattle, but not wild mesoherbivores (15–1,000 kg) or megaherbivores (elephants and giraffes). Herbaceous productivity and tree density, termite dietary resources that are significantly affected by different LMH treatments, are both positive predictors of termite mound abundance. Experimental reductions of tree densities are associated with lower abundances of termite mounds. These results reveal a richly interacting web of relationships among multiple savanna ecosystem engineers and suggest that termite mound abundance and areal cover are intimately tied to herbivore‐driven resource availability.

     
    more » « less
  2. null (Ed.)
    Termites are important ecosystem engineers in tropical habitats, with different feeding groups able to decompose wood, grass, litter, and soil organic matter. In most tropical regions, termite abundance and species diversity are assumed to increase with rainfall, with highest levels found in rainforests. However, in the Australian tropics, this pattern is thought to be reversed, with lower species richness and termite abundance found in rainforest than drier habitats. The potential mechanisms underlying this pattern remain unclear. We compared termite assemblages (abundance, activity, diversity, and feeding group composition) across five sites along a precipitation gradient (ranging from ∼800 to 4,000 mm annual rainfall), spanning dry and wet savanna habitats, wet sclerophyll, and lowland and upland rainforests in tropical North Queensland. Moving from dry to wet habitats, we observed dramatic decreases in termite abundance in both mounds and dead wood occupancy, with greater abundance and activity at savanna sites (low precipitation) compared with rainforest or sclerophyll sites (high precipitation). We also observed a turnover in termite species and feeding group diversity across sites that were close together, but in different habitats. Termite species and feeding group richness were highest in savanna sites, with 13 termite species from wood-, litter-, grass-, dung-, and soil-feeding groups, while only five termite species were encountered in rainforest and wet sclerophyll sites—all wood feeders. These results suggest that the Australian termite diversity anomaly may be partly driven by how specific feeding groups colonized habitats across Australia. Consequently, termites in Australian rainforests may be less important in ecosystem processes, such as carbon and nutrient cycling during decomposition, compared with termites in other tropical rainforests. 
    more » « less
  3. Habitat heterogeneity is a key driver of biodiversity of macroorganisms, yet how heterogeneity structures belowground microbial communities is not well understood. Importantly, belowground microbial communities may respond to any number of abiotic, biotic, and spatial drivers found in heterogeneous environments. Here, we examine potential drivers of prokaryotic and fungal communities in soils across the heterogenous landscape of the imperiled Florida scrub, a pyrogenic ecosystem where slight differences in elevation lead to large changes in water and nutrient availability and vegetation composition. We employ a comprehensive, large-scale sampling design to characterize the communities of prokaryotes and fungi associated with three habitat types and two soil depths (crust and subterranean) to evaluate (i) differences in microbial communities across these heterogeneous habitats, (ii) the relative roles of abiotic, biotic, and spatial drivers in shaping community structure, and (iii) the distribution of fungal guilds across these habitats. We sequenced soils from 40 complete replicates of habitat × soil depth combinations and sequenced the prokaryotic 16S and fungal internal transcribed spacer (ITS) regions using Illumina MiSeq. Habitat heterogeneity generated distinct communities of soil prokaryotes and fungi. Spatial distance played a role in structuring crust communities, whereas subterranean microbial communities were primarily structured by the shrub community, whose roots they presumably interacted with. This result helps to explain the unexpected transition we observed between arbuscular mycorrhiza–dominated soils at low-elevation habitats to ectomycorrhiza-dominated soils at high-elevation habitats. Our results challenge previous notions of environmental determinism of microbial communities and generate new hypotheses regarding symbiotic relationships across heterogeneous environments. 
    more » « less
  4. Abstract Aim

    Understanding the factors that shape biodiversity over space and time is a central question in ecology. Spatiotemporal environmental variation in resource availability can favor different species, generating beta diversity patterns that increase overall diversity. A key question is the degree to which biotic processes—in particular herbivory—enhance or dampen the effect of environmental variation on resource availability at different scales.

    Location

    We tested this question in a semi‐arid California grassland, which is characterized by high rainfall variability. The system supports giant kangaroo rats (Dipodomys ingens), which form mounds that structure spatial variability in soil nutrient availability.

    Methods

    From 2008 to 2017 we implemented a cattle herbivory exclusion experiment to test whether herbivory moderates the effect of spatial and inter‐annual resource variability on plant biomass and diversity both on and off mounds.

    Results

    Grazing reduced local diversity regardless of mound status or amount of precipitation. However, we found that plant productivity was higher on than off mounds, increased following high rainfall years, and that grazing increased these on‐ versus off‐mound differences in wet years—especially after a major drought. Correspondingly, grazing led to on‐mound communities that were more different from each other and from off‐mound communities.

    Conclusions

    Taken together, our results suggest that herbivory generally enhances habitat heterogeneity across this arid landscape, but is resource context‐dependent with greater effects seen in wetter years.

     
    more » « less
  5. Abstract

    Variation in decay rates across woody species is a key uncertainty in predicting the fate of carbon stored in deadwood, especially in the tropics. Quantifying the relative contributions of biotic decay agents, particularly microbes and termites, under different climates and across species with diverse wood traits could help explain this variation.

    To fill this knowledge gap, we deployed woody stems from 16 plant species native to either rainforest (n = 10) or savanna (n = 6) in northeast Australia, with and without termite access. For comparison, we also deployed standardized, non‐native pine blocks at both sites. We hypothesized that termites would increase rates of deadwood decay under conditions that limit microbial activity. Specifically, termite contributions to wood decay should be greater under dry conditions and in wood species with traits that constrain microbial decomposers.

    Termite discovery of stems was surprisingly low with only 17.6% and 22.6% of accessible native stems discovered in the rainforest and savanna respectively. Contrary to our hypothesis, stems discovered by termites decomposed faster only in the rainforest. Termites discovered and decayed pine blocks at higher rates than native stems in both the rainforest and savanna.

    We found significant variation in termite discovery and microbial decay rates across native wood species within the same site. Although wood traits explained 85% of the variation in microbial decay, they did not explain termite‐driven decay. For stems undiscovered by termites, decay rates were greater in species with higher wood nutrient concentrations and syringyl:guiacyl lignin ratios but lower carbon concentrations and wood densities.

    Synthesis. Ecosystem‐scale predictions of deadwood turnover and carbon storage should account for the impact of wood traits on decomposer communities. In tropical Australia, termite‐driven decay was lower than expected for native wood on the ground. Even if termites are present, they may not always increase decomposition rates of fallen native wood in tropical forests. Our study shows how the drivers of wood decay differ between Australian tropical rainforest and savanna; further research should test whether such differences apply world‐wide.

     
    more » « less