Large-scale and rapid improvement in wastewater treatment is common practice in developing countries, yet this influence on nutrient regimes in receiving waterbodies is rarely examined at broad spatial and temporal scales. Here, we present a study linking decadal nutrient monitoring data in lakes with the corresponding estimates of five major anthropogenic nutrient discharges in their surrounding watersheds over time. Within a continuous monitoring dataset covering the period 2008 to 2017, we find that due to different rates of change in TN and TP concentrations, 24 of 46 lakes, mostly located in China’s populated regions, showed increasing TN/TP mass ratios; only 3 lakes showed a decrease. Quantitative relationships between in-lake nutrient concentrations (and their ratios) and anthropogenic nutrient discharges in the surrounding watersheds indicate that increase of lake TN/TP ratios is associated with the rapid improvement in municipal wastewater treatment. Due to the higher removal efficiency of TP compared with TN, TN/TP mass ratios in total municipal wastewater discharge have continued to increase from a median of 10.7 (95% confidence interval, 7.6 to 15.1) in 2008 to 17.7 (95% confidence interval, 13.2 to 27.2) in 2017. Improving municipal wastewater collection and treatment worldwide is an important target within the 17 sustainable development goals set by the United Nations. Given potential ecological impacts on biodiversity and ecosystem function of altered nutrient ratios in wastewater discharge, our results suggest that long-term strategies for domestic wastewater management should not merely focus on total reductions of nutrient discharges but also consider their stoichiometric balance.
more »
« less
Critical evaluation of heat extraction temperature on soluble microbial products (SMP) and extracellular polymeric substances (EPS) quantification in wastewater processes
Abstract While soluble microbial products (SMP) and extracellular polymeric substances (EPS) in wastewater bioprocesses have been widely studied, a lack of standard quantification procedures make it difficult to compare results between studies. This study investigated the effect of temperature on SMP and EPS profiles for biological nutrient removal (BNR) sludges and aerobic membrane bioreactor sludge by adapting the commonly used heat extraction and centrifugation scheme, followed by colorimetric quantification of the carbohydrate and protein fractions using the phenol-sulfuric acid (PS) and the bicinchoninic acid (BCA) methods, respectively. To overcome known inconsistencies in colorimetry, total carbon (TC), total nitrogen (TN), and fluorometry analyses were performed in tandem. SMP samples marginally benefitted from heat extraction, owing to their mostly soluble nature, while EPS profiles were greatly influenced by temperature. 60 °C appears to be a suitable general-purpose extraction temperature near the lysis threshold for the sludges tested. The PS method's misestimation due to lack of specificity was observed and contrasted by TC analyses, while the TN analyses corroborated the BCA assays. Fluorometry proved to be a sensitive and rapid analytical method that provided semi-quantitative information on SMP and EPS constituents, particularly its proteinaceous components, with positive implications for robust wastewater process control.
more »
« less
- Award ID(s):
- 1805631
- PAR ID:
- 10366575
- Publisher / Repository:
- DOI PREFIX: 10.2166
- Date Published:
- Journal Name:
- Water Science and Technology
- Volume:
- 85
- Issue:
- 8
- ISSN:
- 0273-1223
- Page Range / eLocation ID:
- p. 2318-2331
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
High concentrations of barium (Ba), strontium (Sr) and radium (Ra) are present in both the liquid and suspended solid portions of wastewater produced from hydraulic fracturing. These high concentrations often require special treatment in which the solid and liquid portions are separated and then independently treated prior to disposal. The solids are typically disposed in landfills while the liquids are further treated, recycled for future hydraulic fracturing, or disposed via injection wells. Finding optimal treatment methods of both the solid and the liquid fractions requires a thorough understanding of potential Ra mobility from both the raw suspended solids and mineral precipitates formed during treatment. Using a sequential extraction procedure, we found that, without treatment, more than 50% of Ra-226 in the suspended solids was associated with soluble salts and readily exchangeable fractions. When the liquid portion of the wastewater was treated by mixing with acid mine drainage (AMD), which contained high sulfate concentrations, approximately 80–97% of the total Ra-226 in the mixture solution is found in the insoluble sulfate fraction of the precipitate. The activity of Ra-226 sequestered in the precipitated solid sulfate fractions is positively correlated with the Sr/Ba ratio of the wastewater-AMD solution. We discuss implications of these findings for effective long-term management of elevated radium in both solid and liquid wastes.more » « less
-
Abstract There are multiple protocols for determining total nitrogen (TN) in water, but most can be grouped into direct approaches (TN‐d) that convert N forms to nitrogen‐oxides (NOx) and combined approaches (TN‐c) that combine Kjeldahl N (organic N +NH3) and nitrite+nitrate (NO2+NO3‐N). TN concentrations from these two approaches are routinely treated as equal in studies that use data derived from multiple sources (i.e., integrated data sets) despite the distinct chemistries of the two methods. We used two integrated data sets to determine if TN‐c and TN‐d results were interchangeable. Accuracy, determined as the difference between reported concentrations and the most probable value (MPV) of reference samples, was high and similar in magnitude (within 3.5–4.5% of the MPV) for both methods, although the bias was significantly smaller at low concentrations for TN‐d. Detection limits and data flagged as below detection suggested greater sensitivity for TN‐d for one data set, while patterns from the other data set were ambiguous. TN‐c results were more variable (less precise) by many measures, although TN‐d data included a small fraction of notably inaccurate results. Precision of TN‐c was further compromised by propagated error, which may not be acknowledged or detectable in integrated data sets unless complete metadata are available and inspected. Finally, concurrent measures of TN‐c and TN‐d in lake samples were extremely similar. Overall, TN‐d tended to be slightly more accurate and precise, but similarities in accuracy and the near 1 : 1 relationship for concurrent TN‐d and TN‐c measurements support careful use of data interchangeably in analyses of heterogeneous, integrated data sets.more » « less
-
Abstract Wastewater surveillance of SARS-CoV-2 has been used around the world to supplement clinical testing data for situational awareness of COVID-19 disease trends. Many regions of the world lack centralized wastewater collection and treatment infrastructure, which presents additional considerations for wastewater surveillance of SARS-CoV-2, including environmental decay of the RT-qPCR gene targets used for quantification of SARS-CoV-2 virions. Given the role of sunlight in the environmental decay of RNA, we evaluated sunlight photolysis kinetics of the N1 gene target in heat-inactivated SARS-CoV-2 with a solar simulator under laboratory conditions. Insignificant photolysis of the N1 target was observed in a photosensitizer-free matrix. Conversely, significant decay of the N1 target was observed in wastewater at a shallow depth (<1 cm). Given that sunlight irradiance is affected by several environmental factors, first-order decay rate models were used to evaluate the effect of water column depth, time of the year, and latitude on decay kinetics. Decay rate constants were found to decrease significantly with greater depth of the well-mixed water column, at high latitudes, and in the winter. Therefore, sunlight-mediated decay of the N1 gene target is likely to be minimal, and is unlikely to confound results from wastewater-based epidemiology programs utilizing wastewater-impacted surface waters.more » « less
-
null (Ed.)This study examines membrane performance data of a pilot-scale gas-sparged anaerobic membrane bioreactor (AnMBR) over its 472 day operational period and characterizes the foulant cake constituents through a membrane autopsy. The average permeability of 336 ± 81 LMH per bar during the first 40 days of operation decreased by 92% by the study's conclusion. While maintenance cleaning was effective initially, its ability to restore permeability decreased with time. Wasting bioreactor solids appeared to be effective in restoring permeability where chemical cleans were unable to. The restoration mechanism appears to be a decrease in colloidal material, measured by semi-soluble chemical oxygen demand (ssCOD), rather than bioreactor total solids concentration. This is further supported through the use of fluorometry during AnMBR operation, which showed an increase in tyrosine-like compounds during heavy fouling conditions, suggesting that proteinaceous materials have a large influence on fouling. This was corroborated during membrane autopsy using Fourier transform infrared spectroscopy (FTIR). FTIR, scanning electron microscopy with energy dispersive X-ray spectroscopy, and transmission electron microscopy were used to characterize inorganic scalants and predominantly found phosphate salts and calcium sulfate. Fundamentally characterizing foulants and introducing novel and dynamic monitoring parameters during AnMBR operation such as ssCOD and fluorometry can enable more targeted fouling control.more » « less
An official website of the United States government
