skip to main content


Title: NHC-Stabilized Au 10 Nanoclusters and Their Conversion to Au 25 Nanoclusters
Award ID(s):
2003783
NSF-PAR ID:
10366601
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
JACS Au
Volume:
2
Issue:
4
ISSN:
2691-3704
Page Range / eLocation ID:
p. 875-885
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We investigate the excited electron dynamics in [Au 25 (SR) 18 ] −1 (R = CH 3 , C 2 H 5 , C 3 H 7 , MPA, PET) [MPA = mercaptopropanoic acid, PET = phenylethylthiol] nanoparticles to understand how different ligands affect the excited state dynamics in this system. The population dynamics of the core and higher excited states lying in the energy range 0.00–2.20 eV are studied using a surface hopping method with decoherence correction in a real-time DFT approach. All of the ligated clusters follow a similar trend in decay for the core states (S 1 –S 6 ). The observed time constants are on the picosecond time scale (2–19 ps), which agrees with the experimental time scale, and this study confirms that the time constants observed experimentally could originate from core-to-core transitions and not from core-to-semiring transitions. In the presence of higher excited states, R = H, CH 3 , C 2 H 5 , C 3 H 7 , and PET demonstrate similar relaxations trends whereas R = MPA shows slightly different relaxation of the core states due to a smaller gap between the LUMO+1 and LUMO+2 gap in its electronic structure. The S 1 (HOMO → LUMO) state gives the slowest decay in all ligated clusters, while S 7 has a relatively long decay. Furthermore, separate electron and hole relaxations were performed on the [Au 25 (SCH 3 ) 18 ] −1 nanocluster to understand how independent electron and hole relaxations contribute to the overall relaxation dynamics. 
    more » « less