Disclinations in nematic liquid crystals are of great interest both theoretically and practically. The ability to create and reconfigure disclinations connecting predetermined points on substrates could enable novel applications such as directed self-assembly of micro/nanoparticles and molecules. In this study, we present a novel approach to design and create disclination interconnects that connect predetermined positions on substrates. We demonstrate that these interconnects can be switched between different states by re-writing photoalignment materials with linearly polarized light, and can be switched between degenerate states using electric fields. The demonstrated strategy allows for creation of multi-scale designer disclination networks and promises potential applications in directed assembly of colloidal micro-/nano-particles, command of active matter, and liquid crystal microfluidics
more »
« less
Photopatterned Designer Disclination Networks in Nematic Liquid Crystals
Abstract Linear defect‐disclinations are of fundamental interest in understanding complex structures explored by soft matter physics, elementary particles physics, cosmology, and various branches of mathematics. These defects are also of practical importance in materials applications, such as programmable origami, directed colloidal assembly, and command of active matter. Here an effective engineering approach is demonstrated to pattern molecular orientations at two flat confining surfaces that produce complex yet designable networks of singular disclinations of strength 1/2. Depending on the predesigned director patterns at the bounding plates, the produced disclinations are either surface‐anchored, connecting desired sites at the boundaries, or freely suspended in bulk, forming ordered arrays of polygons and wavy lines. The capability is shown to control the radius of curvature, size, and shape of disclinations by varying uniform alignment orientation on one of these confining plates. The capabilities to precisely design and create highly complex 3D disclination networks promise intriguing applications in stimuli‐responsive reconfigurable materials, directed self‐assembly of molecules, micro‐ and nanoparticles, and transport and sorting in microfluidic applications.
more »
« less
- PAR ID:
- 10366605
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Optical Materials
- Volume:
- 9
- Issue:
- 16
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Exotic structures with interesting physical and chemical properties can be achieved by self-organizing engineered building blocks. The central aim for self-assembly is to precisely control the position and orientation of individual building blocks. In this work, we use topological defects (disclinations) in nematic liquid crystals as templates to direct the self-assembly of colloidal particles into designable 3D structures. By photopatterning preprogrammed molecular orientations at two confining surfaces, we created pre-designable disclination networks and characterized their interactions with spherical colloidal particles. We find that colloidal particles are attracted to different disclinations depending on the orientation of the point defect (elastic dipole) around the colloids. We demonstrate that the positions, network structures, and orientation of the elastic dipoles of the colloidal chains can be pre-designed and reconfigured with remote illumination of polarized light.more » « less
-
Abstract Liquid crystals offer a dynamic platform for developing advanced photonics and soft actuation systems due to their unique and facile tunability and reconfigurability. Achieving precise spatial patterning of the liquid crystal alignment is critical to developing electro‐optical devices, programmable origami, directed colloidal assembly, and controlling active matter. Here, a simple method is demonstrated to achieve continuous 3D control of the directions of liquid crystal mesogens using a two‐step photo‐exposure process. In the first step, polarized light sets the orientation in the plane of confining substrates; the second step uses unpolarized light of a prescribed dose to set the out‐of‐plane orientation. The method enables smoothly varying orientational patterns with sub‐micrometer precision. As a demonstration, the setup is used to create gradient‐index lenses with parabolic refractive index profiles that remain stable without external electric fields. The lenses' focal length and sensitivity to light polarization are characterized through experimental and numerical methods. The findings pave the way for developing next‐generation photonic devices and actuated materials, with potential applications in molecular self‐assembly, re‐configurable optics, and responsive matter.more » « less
-
Topological line defects are ubiquitous in nature and appear at all physical scales, including in condensed matter systems, nuclear physics, and cosmology. Particularly useful systems to study line defects are nematic liquid crystals (LCs), where they describe singular or nonsingular frustrations in orientational order and are referred to as disclinations. In nematic LCs, line defects could be relatively simply created, manipulated, and observed. We consider cases where disclinations are stabilized either topologically in plane-parallel confinements or by chirality. In the former case, we report on studies in which defect core transformations are investigated, the intriguing dynamics of strength disclinations in LCs exhibiting negative dielectric anisotropy, and stabilization and manipulation of assemblies of defects. For the case of chiral nematics, we consider nanoparticle-driven stabilization of defect lattices. The resulting line defect assemblies could pave the way to several applications in photonics, sensitive detectors, and information storage devices. These excitations, moreover, have numerous analogs in other branches of physics. Studying their universal properties in nematics could deepen understanding of several phenomena, which are still unresolved at the fundamental level.more » « less
-
Disclination lines play a key role in many physical processes, from the fracture of materials to the formation of the early universe. Achieving versatile control over disclinations is key to developing novel electro-optical devices, programmable origami, directed colloidal assembly, and controlling active matter. Here, we introduce a theoretical framework to tailor three-dimensional disclination architecture in nematic liquid crystals experimentally. We produce quantitative predictions for the connectivity and shape of disclination lines found in nematics confined between two thinly spaced glass substrates with strong patterned planar anchoring. By drawing an analogy between nematic liquid crystals and magnetostatics, we find that i) disclination lines connect defects with the same topological charge on opposite surfaces and ii) disclination lines are attracted to regions of the highest twist. Using polarized light to pattern the in-plane alignment of liquid crystal molecules, we test these predictions experimentally and identify critical parameters that tune the disclination lines’ curvature. We verify our predictions with computer simulations and find nondimensional parameters enabling us to match experiments and simulations at different length scales. Our work provides a powerful method to understand and practically control defect lines in nematic liquid crystals.more » « less
An official website of the United States government
