skip to main content


Title: Oxide Two‐Dimensional Electron Gas with High Mobility at Room‐Temperature
Abstract

The prospect of 2‐dimensional electron gases (2DEGs) possessing high mobility at room temperature in wide‐bandgap perovskite stannates is enticing for oxide electronics, particularly to realize transparent and high‐electron mobility transistors. Nonetheless only a small number of studies to date report 2DEGs in BaSnO3‐based heterostructures. Here, 2DEG formation at the LaScO3/BaSnO3(LSO/BSO) interface with a room‐temperature mobility of 60 cm2 V−1 s−1at a carrier concentration of 1.7 × 1013 cm–2is reported. This is an order of magnitude higher mobility at room temperature than achieved in SrTiO3‐based 2DEGs. This is achieved by combining a thick BSO buffer layer with an ex situ high‐temperature treatment, which not only reduces the dislocation density but also produces a SnO2‐terminated atomically flat surface, followed by the growth of an overlying BSO/LSO interface. Using weak beam dark‐field transmission electron microscopy imaging and in‐line electron holography technique, a reduction of the threading dislocation density is revealed, and direct evidence for the spatial confinement of a 2DEG at the BSO/LSO interface is provided. This work opens a new pathway to explore the exciting physics of stannate‐based 2DEGs at application‐relevant temperatures for oxide nanoelectronics.

 
more » « less
Award ID(s):
2039380
NSF-PAR ID:
10366624
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
9
Issue:
12
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Perovskite oxides are ABO3‐type compounds with a crystal structure capable of accommodating a large number of elements at A‐ and B‐sites. Owing to their flexible structure and complex chemistry, they exhibit a wide range of functionalities as well as novel ground states at the interface. However, in comparison with conventional semiconductors such as silicon, they possess orders of magnitude lower room‐temperature electron mobilities limiting their room‐temperature electronic applications. For example, in a prototypical doped SrTiO3, the room‐temperature electron mobility remains below 10 cm2V−1s−1regardless of the defect minimization. Discovery of high room‐temperature mobility in alkaline‐earth stannates such as BaSnO3and SrSnO3constitutes a significant advancement toward all‐perovskite electronic and spintronic devices. Alkaline‐earth stannates also possess wide‐to‐ultra wide bandgaps that make them potentially suitable candidate for transparent conductors, power electronic devices, and high electron mobility transistors. This article provides an overview of the recent progress made to these materials' electrical properties with particular emphasis on the advancements in the molecular beam epitaxy approaches for their synthesis, and defect control.

     
    more » « less
  2. Abstract

    Due to the coexistence of many emergent phenomena, including 2D superconductivity and a large Rashba spin‐orbit coupling, 5d transition metal oxides‐based two‐dimensional electron systems (2DESs) have been prospected as one of the potential intrants for modern electronics. However, despite the lighter electron mass, the mobility of carriers, a key requisite for high‐performance devices, in 5d‐oxides devices remains far behind their 3d‐oxides analogs. The carriers’ mobility in these oxides is significantly hampered by the inevitable presence of defects. Here, very high mobility (≈22 650 cm2V−1s−1) of 5d‐2DES confined at the LaAlO3/KTaO3interface is reported. The high mobility, which is beyond the values observed in SrTiO32DESs in the same carrier‐density range, is achieved using the ionic‐liquid gating at room temperature. The authors postulate that the ionic‐liquid gating affects the oxygen vacancies and efficiently reduces any disorder at the interface. Investigating density and mobility in a broad range of back‐gate voltage, the authors reveal that the mobility follows the power‐law µ ∝ n1.2, indicating the very high quality of ionic‐liquid‐gated LaAlO3/KTaO3devices, consistent with the postulate. Furthermore, the analysis of the quantum oscillations confirms that the high‐mobility electrons occupy the electronic sub‐bands emerging from the Ta:5d orbitals of KTaO3.

     
    more » « less
  3. We report the electrical properties of Al0.3Ga0.7N/GaN heterojunction field effect transistor (HFET) structures with a Ga2O3 passivation layer grown by metal–organic chemical vapor deposition (MOCVD). In this study, three different thicknesses of β-Ga2O3 dielectric layers were grown on Al0.3Ga0.7N/GaN structures leading to metal-oxide-semiconductor-HFET or MOSHFET structures. X-ray diffraction (XRD) showed the (2¯01) orientation peaks of β-Ga2O3 in the device structure. The van der Pauw and Hall measurements yield the electron density of ~ 4 × 1018 cm−3 and mobility of ~770 cm2V−1s−1 in the 2-dimensional electron gas (2DEG) channel at room temperature. Capacitance–voltage (C-V) measurement for the on-state 2DEG density for the MOSHFET structure was found to be of the order of ~1.5 × 1013 cm−2. The thickness of the Ga2O3 layer was inversely related to the threshold voltage and the on-state capacitance. The interface charge density between the oxide and Al0.3Ga0.7N barrier layer was found to be of the order of ~1012 cm2eV−1. A significant reduction in leakage current from ~10−4 A/cm2 for HFET to ~10−6 A/cm2 for MOSHFET was observed well beyond pinch-off in the off-stage at -20 V applied gate voltage. The annealing at 900° C of the MOSHFET structures revealed that the Ga2O3 layer was thermally stable at high temperatures resulting in insignificant threshold voltage shifts for annealed samples with respect to as-deposited (unannealed) structures. Our results show that the MOCVD-gown Ga2O3 dielectric layers can be a strong candidate for stable high-power devices. 
    more » « less
  4.  
    more » « less
  5. Abstract

    Sc has been employed as an electron contact to a number of two-dimensional (2D) materials (e.g. MoS2, black phosphorous) and has enabled, at times, the lowest electron contact resistance. However, the extremely reactive nature of Sc leads to stringent processing requirements and metastable device performance with no true understanding of how to achieve consistent, high-performance Sc contacts. In this work, WSe2transistors with impressive subthreshold slope (109 mV dec−1) andION/IOFF(106) are demonstrated without post-metallization processing by depositing Sc contacts in ultra-high vacuum (UHV) at room temperature (RT). The lowest electron Schottky barrier height (SBH) is achieved by mildly oxidizing the WSe2in situbefore metallization, which minimizes subsequent reactions between Sc and WSe2. Post metallization anneals in reducing environments (UHV, forming gas) degrade theION/IOFFby ~103and increase the subthreshold slope by a factor of 10. X-ray photoelectron spectroscopy indicates the anneals increase the electron SBH by 0.4–0.5 eV and correspondingly convert 100% of the deposited Sc contacts to intermetallic or scandium oxide. Raman spectroscopy and scanning transmission electron microscopy highlight the highly exothermic reactions between Sc and WSe2, which consume at least one layer RT and at least three layers after the 400 °C anneals. The observed layer consumption necessitates multiple sacrificial WSe2layers during fabrication. Scanning tunneling microscopy/spectroscopy elucidate the enhanced local density of states below the WSe2Fermi level around individual Sc atoms in the WSe2lattice, which directly connects the scandium selenide intermetallic with the unexpectedly large electron SBH. The interface chemistry and structural properties are correlated with Sc–WSe2transistor and diode performance. The recommended combination of processing conditions and steps is provided to facilitate consistent Sc contacts to WSe2.

     
    more » « less