skip to main content


Search for: All records

Award ID contains: 2039380

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The search for new elementary particles is one of the most basic pursuits in physics, spanning from subatomic physics to quantum materials. Magnons are the ubiquitous elementary quasiparticle to describe the excitations of fully-ordered magnetic systems. But other possibilities exist, including fractional and multipolar excitations. Here, we demonstrate that strong quantum interactions exist between three flavors of elementary quasiparticles in the uniaxial spin-one magnet FeI2. Using neutron scattering in an applied magnetic field, we observe spontaneous decay between conventional and heavy magnons and the recombination of these quasiparticles into a super-heavy bound-state. Akin to other contemporary problems in quantum materials, the microscopic origin for unusual physics in FeI2is the quasi-flat nature of excitation bands and the presence of Kitaev anisotropic magnetic exchange interactions.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    Van der Waals (vdW) ferroelectrics have attracted significant attention for their potential in next-generation nano-electronics. Two-dimensional (2D) group-IV monochalcogenides have emerged as a promising candidate due to their strong room temperature in-plane polarization down to a monolayer limit. However, their polarization is strongly coupled with the lattice strain and stacking orders, which impact their electronic properties. Here, we utilize four-dimensional scanning transmission electron microscopy (4D-STEM) to simultaneously probe the in-plane strain and out-of-plane stacking in vdW SnSe. Specifically, we observe large lattice strain up to 4% with a gradient across ~50 nm to compensate lattice mismatch at domain walls, mitigating defects initiation. Additionally, we discover the unusual ferroelectric-to-antiferroelectric domain walls stabilized by vdW force and may lead to anisotropic nonlinear optical responses. Our findings provide a comprehensive understanding of in-plane and out-of-plane structures affecting domain properties in vdW SnSe, laying the foundation for domain wall engineering in vdW ferroelectrics.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Abstract

    A BiFeO3film is grown epitaxially on a PrScO3single crystal substrate which imparts ~ 1.45% of biaxial tensile strain to BiFeO3resulting from lattice misfit. The biaxial tensile strain effect on BiFeO3is investigated in terms of crystal structure, Poisson ratio, and ferroelectric domain structure. Lattice resolution scanning transmission electron microscopy, precession electron diffraction, and X-ray diffraction results clearly show that in-plane interplanar distance of BiFeO3is the same as that of PrScO3with no sign of misfit dislocations, indicating that the biaxial tensile strain caused by lattice mismatch between BiFeO3and PrScO3are stored as elastic energy within BiFeO3film. Nano-beam electron diffraction patterns compared with structure factor calculation found that the BiFeO3maintains rhombohedral symmetry, i.e., space group ofR3c. The pattern analysis also revealed two crystallographically distinguishable domains. Their relations with ferroelectric domain structures in terms of size and spontaneous polarization orientations within the domains are further understood using four-dimensional scanning transmission electron microscopy technique.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Abstract

    The layer stacking order in 2D materials strongly affects functional properties and holds promise for next-generation electronic devices. In bulk, octahedral MoTe2possesses two stacking arrangements, the ferroelectric Weyl semimetal Tdphase and the higher-order topological insulator 1T′ phase. However, in thin flakes of MoTe2, it is unclear if the layer stacking follows the Td, 1T′, or an alternative stacking sequence. Here, we use atomic-resolution scanning transmission electron microscopy to directly visualize the MoTe2layer stacking. In thin flakes, we observe highly disordered stacking, with nanoscale 1T′ and Tddomains, as well as alternative stacking arrangements not found in the bulk. We attribute these findings to intrinsic confinement effects on the MoTe2stacking-dependent free energy. Our results are important for the understanding of exotic physics displayed in MoTe2flakes. More broadly, this work suggestsc-axis confinement as a method to influence layer stacking in other 2D materials.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  5. Abstract

    High-density phase change memory (PCM) storage is proposed for materials with multiple intermediate resistance states, which have been observed in 1T-TaS2due to charge density wave (CDW) phase transitions. However, the metastability responsible for this behavior makes the presence of multistate switching unpredictable in TaS2devices. Here, we demonstrate the fabrication of nanothick verti-lateralH-TaS2/1T-TaS2heterostructures in which the number of endotaxial metallicH-TaS2monolayers dictates the number of resistance transitions in 1T-TaS2lamellae near room temperature. Further, we also observe optically active heterochirality in the CDW superlattice structure, which is modulated in concert with the resistivity steps, and we show how strain engineering can be used to nucleate these polytype conversions. This work positions the principle of endotaxial heterostructures as a promising conceptual framework for reliable, non-volatile, and multi-level switching of structure, chirality, and resistance.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  6. Abstract

    The charge density wave material 1T-TaS2exhibits a pulse-induced insulator-to-metal transition, which shows promise for next-generation electronics such as memristive memory and neuromorphic hardware. However, the rational design of TaS2devices is hindered by a poor understanding of the switching mechanism, the pulse-induced phase, and the influence of material defects. Here, we operate a 2-terminal TaS2device within a scanning transmission electron microscope at cryogenic temperature, and directly visualize the changing charge density wave structure with nanoscale spatial resolution and down to 300 μs temporal resolution. We show that the pulse-induced transition is driven by Joule heating, and that the pulse-induced state corresponds to the nearly commensurate and incommensurate charge density wave phases, depending on the applied voltage amplitude. With our in operando cryogenic electron microscopy experiments, we directly correlate the charge density wave structure with the device resistance, and show that dislocations significantly impact device performance. This work resolves fundamental questions of resistive switching in TaS2devices, critical for engineering reliable and scalable TaS2electronics.

     
    more » « less
  7. Abstract

    Measuring local polar ordering is key to understanding ferroelectricity in thin films, especially for systems with small domains or significant disorder. Scanning nanobeam electron diffraction (NBED) provides an effective local probe of lattice parameters, local fields, polarization directions, and charge densities, which can be analyzed using a relatively low beam dose over large fields of view. However, quantitatively extracting the magnitudes and directions of polarization vectors from NBED remains challenging. Here, we use a cepstral approach, similar to a pair distribution function, to determine local polar displacements that drive ferroelectricity from NBED patterns. Because polar distortions generate asymmetry in the diffraction pattern intensity, we can efficiently recover the underlying displacements from the imaginary part of the cepstrum transform. We investigate the limits of this technique using analytical and simulated data and give experimental examples, achieving the order of 1.1 pm precision and mapping of polar displacements with nanometer resolution.

     
    more » « less
    Free, publicly-accessible full text available July 12, 2024
  8. Graphical abstract 
    more » « less
  9. Abstract

    The presence of inclusions, twinning, and low-angle grain boundaries, demanded to exist by the third law of thermodynamics, drive the behavior of quantum materials. Identification and quantification of these structural complexities often requires destructive techniques. X-ray micro-computed tomography (µCT) uses high-energy X-rays to non-destructively generate 3D representations of a material with micron/nanometer precision, taking advantage of various contrast mechanisms to enable the quantification of the types and number of inhomogeneities. We present case studies of µCT informing materials design of electronic and quantum materials, and the benefits to characterizing inclusions, twinning, and low-angle grain boundaries as well as optimizing crystal growth processes. We discuss recent improvements in µCT instrumentation that enable elemental analysis and orientation to be obtained on crystalline samples. The benefits of µCT as a non-destructive tool to analyze bulk samples should encourage the community to adapt this technology into everyday use for quantum materials discovery.

     
    more » « less
  10. Abstract

    The ability to reconfigure spin structure and spin‐photon interactions by an external electric field is a prerequisite for seamless integration of opto‐spintronics into modern electronics. In this study, the use of electric field on the tuning of circular photo galvanic effect in a quasi‐2D oxyhalide perovskite Bi4NbO8Cl is reported. The electrical transport measurements are applied to study the switching characteristics of the microsheet devices. The electric field is used to tune the nanoscale devices and an optical orientation approach is applied to understand the field‐tuned spin‐polarized band structures. It is found that the circular photogalvanic current can be erased and re‐created by poling, indicating the electric‐field‐based control over spin structure. The study enriches the basic understanding of the symmetry‐regulated optoelectronic response in ferroelectrics with spin‐orbit coupling.

     
    more » « less