skip to main content

Search for: All records

Award ID contains: 2039380

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Compelling evidence suggests distinct correlated electron behavior may exist only in clean 2D materials such as 1T-TaS 2 . Unfortunately, experiment and theory suggest that extrinsic disorder in free standing 2D layers disrupts correlation-driven quantum behavior. Here we demonstrate a route to realizing fragile 2D quantum states through endotaxial polytype engineering of van der Waals materials. The true isolation of 2D charge density waves (CDWs) between metallic layers stabilizes commensurate long-range order and lifts the coupling between neighboring CDW layers to restore mirror symmetries via interlayer CDW twinning. The twinned-commensurate charge density wave (tC-CDW) reported herein has a single metal–insulator phase transition at ~350 K as measured structurally and electronically. Fast in-situ transmission electron microscopy and scanned nanobeam diffraction map the formation of tC-CDWs. This work introduces endotaxial polytype engineering of van der Waals materials to access latent 2D ground states distinct from conventional 2D fabrication.
    Free, publicly-accessible full text available December 1, 2023
  2. ScSI, a missing member of the rare earth sulfoiodide (RESI) family of materials, has been synthesized for the first time. ScSI crystallizes in the FeOCl structure type, space group Pmmn (No. 59), a = 3.8904(2), b = 5.0732(9), c = 8.9574(6) Å. Both hyperspectral reflectance measurements and ab initio calculations support the presence of an indirect optical band gap of 2.0 eV. The bulk crystal is found to be readily exfoliatable, enabling its use as an optical component in novel heterostructures. The impact of lithium intercalation on its electronic band structure is also explored. A broader correlation is drawn between the observed structural trends in all known 1:1:1 sulfoiodide phases, cationic proportions, and electronic considerations. The realization of this phase both fills a significant synthetic gap in the literature and presents a novel exfoliatable phase for use as an optical component in next-generation heterostructure devices.
    Free, publicly-accessible full text available July 1, 2023
  3. Free, publicly-accessible full text available May 5, 2023
  4. Ferroelectric nanomaterials offer the promise of switchable electronic properties at the surface, with implications for photo- and electrocatalysis. Studies to date on the effect of ferroelectric surfaces in electrocatalysis have been primarily limited to nanoparticle systems where complex interfaces arise. Here, we use MBE-grown epitaxial BaTiO3 thin films with atomically sharp interfaces as model surfaces to demonstrate the effect of ferroelectric polarization on the electronic structure, intermediate binding energy, and electrochemical activity toward the hydrogen evolution reaction (HER). Surface spectroscopy and ab initio DFT +U calculations of the well-defined (001) surfaces indicate that an upward polarized surface reduces the work function relative to downward polarization and leads to a smaller HER barrier, in agreement with the higher activity observed experimentally. Employing ferroelectric polarization to create multiple adsorbate interactions over a single electrocatalytic surface, as demonstrated in this work, may offer new opportunities for nanoscale catalysis design beyond traditional descriptors.
    Free, publicly-accessible full text available May 2, 2023
  5. Free, publicly-accessible full text available May 1, 2023
  6. Free, publicly-accessible full text available May 1, 2023
  7. Free, publicly-accessible full text available April 1, 2023
  8. Free, publicly-accessible full text available April 1, 2023
  9. As a real-space technique, atomic-resolution STEM imaging contains both amplitude and geometric phase information about structural order in materials, with the latter encoding important information about local variations and heterogeneities present in crystalline lattices. Such phase information can be extracted using geometric phase analysis (GPA), a method which has generally focused on spatially mapping elastic strain. Here we demonstrate an alternative phase demodulation technique and its application to reveal complex structural phenomena in correlated quantum materials. As with other methods of image phase analysis, the phase lock-in approach can be implemented to extract detailed information about structural order and disorder, including dislocations and compound defects in crystals. Extending the application of this phase analysis to Fourier components that encode periodic modulations of the crystalline lattice, such as superlattice or secondary frequency peaks, we extract the behavior of multiple distinct order parameters within the same image, yielding insights into not only the crystalline heterogeneity but also subtle emergent order parameters such as antipolar displacements. When applied to atomic-resolution images spanning large (~0.5 × 0.5 μ m 2 ) fields of view, this approach enables vivid visualizations of the spatial interplay between various structural orders in novel materials.
    Free, publicly-accessible full text available April 1, 2023
  10. Precision and accuracy of quantitative scanning transmission electron microscopy (STEM) methods such as ptychography, and the mapping of electric, magnetic, and strain fields depend on the dose. Reasonable acquisition time requires high beam current and the ability to quantitatively detect both large and minute changes in signal. A new hybrid pixel array detector (PAD), the second-generation Electron Microscope Pixel Array Detector (EMPAD-G2), addresses this challenge by advancing the technology of a previous generation PAD, the EMPAD. The EMPAD-G2 images continuously at a frame-rates up to 10 kHz with a dynamic range that spans from low-noise detection of single electrons to electron beam currents exceeding 180 pA per pixel, even at electron energies of 300 keV. The EMPAD-G2 enables rapid collection of high-quality STEM data that simultaneously contain full diffraction information from unsaturated bright-field disks to usable Kikuchi bands and higher-order Laue zones. Test results from 80 to 300 keV are presented, as are first experimental results demonstrating ptychographic reconstructions, strain and polarization maps. We introduce a new information metric, the maximum usable imaging speed (MUIS), to identify when a detector becomes electron-starved, saturated or its pixel count is mismatched with the beam current.
    Free, publicly-accessible full text available April 1, 2023