skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Search for: All records

Award ID contains: 2039380

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Graphical abstract 
    more » « less
  2. Abstract

    The presence of inclusions, twinning, and low-angle grain boundaries, demanded to exist by the third law of thermodynamics, drive the behavior of quantum materials. Identification and quantification of these structural complexities often requires destructive techniques. X-ray micro-computed tomography (µCT) uses high-energy X-rays to non-destructively generate 3D representations of a material with micron/nanometer precision, taking advantage of various contrast mechanisms to enable the quantification of the types and number of inhomogeneities. We present case studies of µCT informing materials design of electronic and quantum materials, and the benefits to characterizing inclusions, twinning, and low-angle grain boundaries as well as optimizing crystal growth processes. We discuss recent improvements in µCT instrumentation that enable elemental analysis and orientation to be obtained on crystalline samples. The benefits of µCT as a non-destructive tool to analyze bulk samples should encourage the community to adapt this technology into everyday use for quantum materials discovery.

    more » « less
  3. Abstract

    The ability to reconfigure spin structure and spin‐photon interactions by an external electric field is a prerequisite for seamless integration of opto‐spintronics into modern electronics. In this study, the use of electric field on the tuning of circular photo galvanic effect in a quasi‐2D oxyhalide perovskite Bi4NbO8Cl is reported. The electrical transport measurements are applied to study the switching characteristics of the microsheet devices. The electric field is used to tune the nanoscale devices and an optical orientation approach is applied to understand the field‐tuned spin‐polarized band structures. It is found that the circular photogalvanic current can be erased and re‐created by poling, indicating the electric‐field‐based control over spin structure. The study enriches the basic understanding of the symmetry‐regulated optoelectronic response in ferroelectrics with spin‐orbit coupling.

    more » « less
  4. Abstract

    The prospect of 2‐dimensional electron gases (2DEGs) possessing high mobility at room temperature in wide‐bandgap perovskite stannates is enticing for oxide electronics, particularly to realize transparent and high‐electron mobility transistors. Nonetheless only a small number of studies to date report 2DEGs in BaSnO3‐based heterostructures. Here, 2DEG formation at the LaScO3/BaSnO3(LSO/BSO) interface with a room‐temperature mobility of 60 cm2 V−1 s−1at a carrier concentration of 1.7 × 1013 cm–2is reported. This is an order of magnitude higher mobility at room temperature than achieved in SrTiO3‐based 2DEGs. This is achieved by combining a thick BSO buffer layer with an ex situ high‐temperature treatment, which not only reduces the dislocation density but also produces a SnO2‐terminated atomically flat surface, followed by the growth of an overlying BSO/LSO interface. Using weak beam dark‐field transmission electron microscopy imaging and in‐line electron holography technique, a reduction of the threading dislocation density is revealed, and direct evidence for the spatial confinement of a 2DEG at the BSO/LSO interface is provided. This work opens a new pathway to explore the exciting physics of stannate‐based 2DEGs at application‐relevant temperatures for oxide nanoelectronics.

    more » « less
  5. Abstract The layered square-planar nickelates, Nd n +1 Ni n O 2 n +2 , are an appealing system to tune the electronic properties of square-planar nickelates via dimensionality; indeed, superconductivity was recently observed in Nd 6 Ni 5 O 12 thin films. Here, we investigate the role of epitaxial strain in the competing requirements for the synthesis of the n  = 3 Ruddlesden-Popper compound, Nd 4 Ni 3 O 10 , and subsequent reduction to the square-planar phase, Nd 4 Ni 3 O 8 . We synthesize our highest quality Nd 4 Ni 3 O 10 films under compressive strain on LaAlO 3 (001), while Nd 4 Ni 3 O 10 on NdGaO 3 (110) exhibits tensile strain-induced rock salt faults but retains bulk-like transport properties. A high density of extended defects forms in Nd 4 Ni 3 O 10 on SrTiO 3 (001). Films reduced on LaAlO 3 become insulating and form compressive strain-induced c -axis canting defects, while Nd 4 Ni 3 O 8 films on NdGaO 3 are metallic. This work provides a pathway to the synthesis of Nd n +1 Ni n O 2 n +2 thin films and sets limits on the ability to strain engineer these compounds via epitaxy. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  6. Free, publicly-accessible full text available September 1, 2024
  7. Free, publicly-accessible full text available May 1, 2024
  8. Free, publicly-accessible full text available April 12, 2024
  9. Free, publicly-accessible full text available April 6, 2024