Abstract Hierarchical plasmonic biomaterials constructed from small nanoparticles (NPs) that combine into larger micron‐sized structures exhibit unique properties that can be harnessed for various applications. Using diffusion‐limited aggregation (DLA) and defined peptide sequences, we developed fractal silver biomaterials with a Brownian tree structure. This method avoids complex redox chemistry and allows precise control of interparticle distance and material morphology through peptide design and concentration. Our systematic investigation revealed how peptide charge, length, and sequence impact biomaterial morphology, confirming that peptides act as bridging motifs between particles and induce coalescence. Characterization through spectroscopy and microscopy demonstrated that arginine‐based peptides are optimal for fractal assembly based on both quantitative and qualitative measurements. Additionally, our study of diffusion behavior confirmed the effect of particle size, temperature, and medium viscosity on nanoparticle mobility. This work also provides insights into the facet distribution in silver NPs and their assembly mechanisms, offering potential advancements in the design of materials for medical, environmental, and electronic applications.
more »
« less
Investigating Particle Size‐Dependent Redox Kinetics and Charge Distribution in Disordered Rocksalt Cathodes
Abstract Understanding how various redox activities evolve and distribute in disordered rocksalt oxides (DRX) can advance insights into manipulating materials properties for achieving stable, high‐energy batteries. Herein, the authors present how the reaction kinetics and spatial distribution of redox activities are governed by the particle size of DRX materials. The size‐dependent electrochemical performance is attributed to the distinct cationic and anionic reaction kinetics at different sizes, which can be tailored to achieve optimal capacity and stability. Overall, the local charged domains in DRX particles display random heterogeneity caused by the isotropic delithiation pathways. Owing to the kinetic limitation, the micron‐sized particles exhibit a holistic “core‐shell” charge distribution, whereas sub‐micron particles show more uniform redox reactions throughout the particles and ensembles. Sub‐micron DRX particles exhibit increasing anionic redox activities yet inferior cycling stability. In summary, engineering particle size can effectively modulate how cationic and anionic redox activities evolve and distribute in DRX materials.
more »
« less
- Award ID(s):
- 2045570
- PAR ID:
- 10366668
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 32
- Issue:
- 17
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Layered oxide cathode with a Li‐O‐vacancy configuration offers high capacity by leveraging additional oxygen redox reactions. However, it faces severe challenges of sluggish kinetics of oxygen redox reactions and lattice oxygen loss, resulting in slow Li+diffusion and rapid electrochemical degradation. Herein, Ti is introduced as electrochemical inactive element into Li‐O‐vacancy configuration to form Mn/vacancy/Ti arrangement within transition metal layers of layered oxide, achieving a marked increase in average output voltage at high current density compared with Ti‐free counterpart. Not only voltage hysteresis between charge and discharge processes can be significantly reduced, but rate capability can be heightened in Li4/7[□1/7Ti1/7Mn5/7]O2by means of retrained over‐potential and improved Li+diffusivity. Furthermore, theoretical calculations suggest that these improvements stem from Ti substitution, which elongates the Li─O bond and lowers the Li+migration energy barrier. Besides, in situ differential electrochemical mass spectrometry and soft X‐ray absorption spectroscopy reveal the modified Li‐O‐vacancy configuration enables reversible anionic and cationic redox behaviors during cycling. These findings provide a promising strategy for tailoring oxygen redox activity and accelerating Li+diffusion kinetics in layered cathode materials with oxygen redox chemistry.more » « less
-
Abstract Li‐rich layered chalcogenides have recently led to better understanding of the anionic redox process and its associated high capacity while providing ways to overcome its practical limitations of voltage fade and irreversibility. This study reports on the feasibility of triggering anionic activity in Li2TiS3, through anionic substitution (Se for S) or cationic substitution (Fe for Ti). Herein, the chalcogenide chemical space is further explored to prepare mono‐substituted Li1.7Ti0.85Mn0.45Ch3(Ch = S/Se) and doubly substituted cationic and anionic phases (Li1.7Ti0.85Fe0.45S3‐zSez) which crystallize either in the O3‐ or O1‐type structures depending upon substituents. All series show a bell‐shape capacity variation as function of the transition metal (TM) substitution degree with values up to 240 mAh g−1. For specific compositions, a structural O3 to O1 phase transition is observed upon Li removal, which is not reversible upon Li re‐insertion due to kinetic limitations and negatively affects long‐term cycling performance. Density functional theory (DFT) calculations confirm the O3/O1 relative stability along the different series and point subtle electronic differences in the TM‐doping, rationalizing the structural and electrochemical behaviors of these phases upon cycling. These findings provide further insights into the link between structural and electronic stability, which is of key importance for designing chalcogenide‐based anionic redox compounds.more » « less
-
Charge heterogeneity is a prevalent feature in many electrochemical systems. In a commercial cathode of Li-ion batteries, the composite is hierarchically structured across multiple length scales including the sub-micron single-crystal primary-particle domains up to the macroscopic particle ensembles. The redox kinetics of charge transfer and mass transport strongly couples with mechanical stresses. This interplay catalyzes substantial heterogeneity in the charge (re)distribution, stresses, and mechanical damage in the composite electrode during charging and discharging. We assess the heterogeneous electrochemistry and mechanics in a LiNixMnyCozO2(NMC) cathode using a fully coupled electro-chemo-mechanics model at the cell level. A microstructure-resolved model is constructed based on the synchrotron X-ray tomography data. We calculate the stress field in the composite and then quantitatively evaluate the kinetics of surface charge transfer and Li transport biased by mechanical stresses. We further model the cyclic behavior of the cell. The repetitive deformation of the active particles and the weakening of the interfacial strength cause gradual increase of the interfacial debonding. The mechanical damage impedes electron transfer, incurs more charge heterogeneity, and results in the capacity degradation in batteries over cycles.more » « less
-
Abstract Crystallographic defects exist in many redox active energy materials, e.g., battery and catalyst materials, which significantly alter their chemical properties for energy storage and conversion. However, there is lack of quantitative understanding of the interrelationship between crystallographic defects and redox reactions. Herein, crystallographic defects, such as geometrically necessary dislocations, are reported to influence the redox reactions in battery particles through single‐particle, multimodal, and in situ synchrotron measurements. Through Laue X‐ray microdiffraction, many crystallographic defects are spatially identified and statistically quantified from a large quantity of diffraction patterns in many layered oxide particles, including geometrically necessary dislocations, tilt boundaries, and mixed defects. The in situ and ex situ measurements, combining microdiffraction and X‐ray spectroscopy imaging, reveal that LiCoO2particles with a higher concentration of geometrically necessary dislocations provide deeper charging reactions, indicating that dislocations may facilitate redox reactions in layered oxides during initial charging. The present study illustrates that a precise control of crystallographic defects and their distribution can potentially promote and homogenize redox reactions in battery materials.more » « less
An official website of the United States government
