Abstract Salinity (sodium chloride, NaCl) from anthropogenic sources is a persistent contaminant that negatively affects freshwater taxa. Amphibians can be susceptible to salinity, but some species are innately or adaptively tolerant. Physiological mechanisms mediating tolerance to salinity are still unclear, but changes in osmoregulatory hormones such as corticosterone (CORT) and aldosterone (ALDO) are prime candidates. We exposed larval barred tiger salamanders (Ambystoma mavortium) to environmentally relevant NaCl treatments (<32–4000 mg·L−1) for 24 days to test effects on growth, survival, and waterborne CORT responses. Of those sampled, we also quantified waterborne ALDO from a subset. Using a glucocorticoid antagonist (RU486), we also experimentally suppressed CORT signaling of some larvae to determine if CORT mediates effects of salinity. There were no strong differences in survival among salinity treatments, but salinity reduced dry mass, snout–vent length, and body condition while increasing water content of larvae. High survival and sublethal effects demonstrated that salamanders were physiologically challenged but could tolerate the experimental concentrations. CORT signaling did not attenuate sublethal effects of salinity. Baseline and stress‐induced (after an acute stressor, shaking) CORT were not influenced by salinity. ALDO was correlated with baseline CORT, suggesting it could be difficult to decouple the roles of CORT and ALDO. Future studies comparing ALDO and CORT responses of adaptively tolerant and previously unexposed populations could be beneficial to understand the roles of these hormones in tolerance to salinity. Nevertheless, our study enhances our understanding of the roles of corticosteroid hormones in mediating effects of a prominent anthropogenic stressor.
more »
« less
Are glucocorticoids good indicators of disturbance across populations that exhibit cryptic variation in contaminant tolerance?
Abstract Glucocorticoids (corticosterone/cortisol; cort) are frequently used in conservation as biomarkers of disturbance in wild populations. However, the context‐dependent nature of cort means that it may not always accurately reflect disturbance. For example, there is growing evidence that wildlife populations can evolve or acclimate to human‐induced environmental change (i.e. contaminants) by expressing higher levels of tolerance. Mechanisms that allow for populations to achieve higher contaminant tolerance can be related to cort and thereby impact the reliability of cort as an indicator of disturbance. This study asks: (1) do wildlife populations that differ in tolerance to contaminants differentially express baseline and stress‐induced cort and (2) is cort a viable indicator of disturbance across populations that differ in tolerance to contaminants? Toward this goal, we identified three wood frogRana sylvaticapopulations with relatively high NaCl tolerance and three populations with relatively low NaCl tolerance. Tadpoles from these populations were reared to metamorphosis in either an environmentally relevant concentration of NaCl (0.5 g L−1NaCl) or a control (0 g L−1NaCl). At metamorphosis we used a non‐invasive waterborne assay to measure baseline and stress‐induced cort release rates and measured fitness‐related metrics. We found that contaminant tolerance influences cort levels. More tolerant populations had lower baseline cort and higher fitness compared to less tolerant populations. However, despite variation in cort across populations with different levels of tolerance, cort still represents a viable indicator of condition as our results show a consistent negative relationship between cort and fitness. Lastly, we found that levels of cort were consistent regardless of whether amphibians were reared in NaCl contaminated or non‐contaminated environments. Overall, we emphasize the importance of recognizing population‐level variation in cort due to contaminant tolerance when using cort as a biomarker for conservation purposes.
more »
« less
- PAR ID:
- 10366677
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Animal Conservation
- Volume:
- 25
- Issue:
- 2
- ISSN:
- 1367-9430
- Page Range / eLocation ID:
- p. 273-284
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ex situ conservation, translocation, and reintroduction are becoming increasingly important for species restoration. In amphibians, however, effects of captive stress on adults and subsequent effects on their offspring that are later reintroduced into the wild are largely unknown. Using Fowler’s toads (Anaxyrus fowleri) as a model species, we investigated effects of increased captive stress on corticosterone (CORT) concentration in adult toads. We then examined CORT levels in their tadpole offspring, which we reared in natural ponds to simulate conditions of a reintroduced population. We found no significant effects of captive stress on adult or offspring CORT levels. However, despite poor model performance due to low sample size, baseline CORT of sires (but not dams) was the best predictor of, and negatively correlated with, baseline CORT and change in CORT in offspring. Our study provides a unique perspective on the potential translation of stress from parent to offspring and points to a need for a closer examination of paternal effects in cases of cross-generational studies in amphibians.more » « less
-
null (Ed.)Abstract Background Increases in temperature variability associated with climate change have critical implications for the phenology of wildlife across the globe. For example, warmer winter temperatures can induce forward shifts in breeding phenology across taxa (“false springs”), which can put organisms at risk of freezing conditions during reproduction or vulnerable early life stages. As human activities continue to encroach on natural ecosystems, it is also important to consider how breeding phenology interacts with other anthropogenic stressors (e.g., pollutants). Using 14 populations of a widespread amphibian (wood frog; Rana sylvatica ), we compared 1) growth; 2) tolerance to a common wetland contaminant (NaCl); and 3) the ability of tadpoles to acclimate to lethal NaCl exposure following sublethal exposure earlier in life. We evaluated these metrics across two breeding seasons (2018 and 2019) and across populations of tadpoles whose parents differed in breeding phenology (earlier- versus later-breeding cohorts). In both years, the earlier-breeding cohorts completed breeding activity prior to a winter storm and later-breeding cohorts completed breeding activities after a winter storm. The freezing conditions that later-breeding cohorts were exposed to in 2018 were more severe in both magnitude and duration than those in 2019. Results In 2018, offspring of the later-breeding cohort were larger but less tolerant of NaCl compared to offspring of the earlier-breeding cohort. The offspring of the earlier-breeding cohort additionally were able to acclimate to a lethal concentration of NaCl following sublethal exposure earlier in life, while the later-breeding cohort became less tolerant of NaCl following acclimation. Interestingly, in 2019, the warmer of the two breeding seasons, we did not detect the negative effects of later breeding phenology on responses to NaCl. Conclusions These results suggest that phenological shifts that expose breeding amphibians to freezing conditions can have cascading consequences on offspring mass and ability to tolerate future stressors but likely depends on the severity of the freeze event.more » « less
-
ABSTRACT There is great interspecific variation in the nutritional composition of natural diets, and the varied nutritional content is physiologically tolerated because of evolutionarily based balances between diet composition and processing ability. However, as a result of landscape change and human exposure, unnatural diets are becoming widespread among wildlife without the necessary time for evolutionary matching between the diet and its processing. We tested how a controlled, unnatural high glucose diet affects glucose tolerance using captive green iguanas, and we performed similar glucose tolerance tests on wild Northern Bahamian rock iguanas that are either frequently fed grapes by tourists or experience no such supplementation. We evaluated both short and longer-term blood glucose responses and corticosterone (CORT) concentrations as changes have been associated with altered diets. Experimental glucose supplementation in the laboratory and tourist feeding in the wild both significantly affected glucose metabolism. When iguanas received a glucose-rich diet, we found greater acute increases in blood glucose following a glucose challenge. Relative to unfed iguanas, tourist-fed iguanas had significantly lower baseline CORT, higher baseline blood glucose, and slower returns to baseline glucose levels following a glucose challenge. Therefore, unnatural consumption of high amounts of glucose alters glucose metabolism in laboratory iguanas with short-term glucose treatment and free-living iguanas exposed to long-term feeding by tourists. Based on these results and the increasing prevalence of anthropogenically altered wildlife diets, the consequences of dietary changes on glucose metabolism should be further investigated across species, as such changes in glucose metabolism have health consequences in humans (e.g. diabetes).more » « less
-
Corticosteroids are critical for development and for mediating stress responses across diverse vertebrate taxa. Study of frog metamorphosis has made significant breakthroughs in our understanding of corticosteroid signaling during development in non-mammalian vertebrate species. However, lack of adequate corticosterone (CORT) response genes in tadpoles make identification and quantification of CORT responses challenging. Here, we characterized a CORT-response genefrzb(frizzled related protein) previously identified inXenopus tropicalistadpole tail skin by an RNA-seq study. We validated the RNA-seq results that CORT and not thyroid hormone inducesfrzbin the tails using quantitative PCR. Further, maximumfrzbexpression was achieved by 100-250 nM CORT within 12-24 hours.frzbis not significantly induced in the liver and brain in response to 100 nM CORT. We also found no change infrzbexpression across natural metamorphosis when endogenous CORT levels peak. Surprisingly,frzbis only induced by CORT inX. tropicalistails and not inXenopus laevistails. The exact downstream function of increasedfrzbexpression in tails in response to CORT is not known, but the specificity of hormone response and its high mRNA expression levels in the tail renderfrzba useful marker of exogenous CORT-response independent of thyroid hormone for exogenous hormone treatments andin-vivoendocrine disruption studies.more » « less
An official website of the United States government
