skip to main content


Title: When Does Faulting‐Induced Subsidence Drive Distributary Network Reorganization?
Abstract

Deltas exhibit spatially and temporally variable subsidence, including vertical displacement due to movement along fault planes. Faulting‐induced subsidence perturbs delta‐surface gradients, potentially causing distributary networks to shift sediment dispersal within the landscape. Sediment dispersal restricted to part of the landscape could hinder billion‐dollar investments aiming to restore delta land, making faulting‐induced subsidence a potentially significant, yet unconstrained hazard to these projects. In this study, we modeled a range of displacement events in disparate deltaic environments, and observe that a channelized connection with the displaced area determines whether a distributary network reorganizes. When this connection exists, the magnitude of distributary network reorganization is predicted by a ratio relating dimensions of faulting‐induced subsidence and channel geometry. We use this ratio to extend results to real‐world deltas and assess hazards to deltaic‐land building projects.

 
more » « less
Award ID(s):
1719670
NSF-PAR ID:
10366678
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
22
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Arising from the non‐uniform dispersal of sediment and water that build deltaic landscapes, morphological change is a fundamental characteristic of river delta behavior. Thus, sustainable deltas require mobility of their channel networks and attendant shifts in landforms. Both behaviors can be misrepresented as degradation, particularly in context of the “stability” that is generally necessitated by human infrastructure and economies. Taking the Ganges‐Brahmaputra‐Meghna Delta as an example, contrary to public perception, this delta system appears to be sustainable at a system scale with high sediment delivery and long‐term net gain in land area. However, many areas of the delta exhibit local dynamics and instability at the scale at which households and communities experience environmental change. Such local landscape “instability” is often cited as evidence that the delta is in decline, whereas much of this change simply reflects the morphodynamics typical of an energetic fluvial‐delta system and do not provide an accurate reflection of overall system health. Here we argue that this disparity between unit‐scale sustainability and local morphodynamic change may be typical of deltaic systems with well‐developed distributary networks and strong spatial gradients in sediment supply and transport energy. Such non‐uniformity and the important connections between network sub‐units (i.e., fluvial, tidal, shelf) suggest that delta risk assessments must integrate local dynamics and sub‐unit connections with unit‐scale behaviors. Structure and dynamics of an integrated deltaic network control the dispersal of water, solids, and solutes to the delta sub‐environment and thus the local to unit‐scale sustainability of the system over time.

     
    more » « less
  2. Abstract River deltas all over the world are sinking beneath sea-level rise, causing significant threats to natural and social systems. This is due to the combined effects of anthropogenic changes to sediment supply and river flow, subsidence, and sea-level rise, posing an immediate threat to the 500–1,000 million residents, many in megacities that live on deltaic coasts. The Mississippi River Deltaic Plain (MRDP) provides examples for many of the functions and feedbacks, regarding how human river management has impacted source-sink processes in coastal deltaic basins, resulting in human settlements more at risk to coastal storms. The survival of human settlement on the MRDP is arguably coupled to a shifting mass balance between a deltaic landscape occupied by either land built by the Mississippi River or water occupied by the Gulf of Mexico. We developed an approach to compare 50 % L:W isopleths (L:W is ratio of land to water) across the Atchafalaya and Terrebonne Basins to test landscape behavior over the last six decades to measure delta instability in coastal deltaic basins as a function of reduced sediment supply from river flooding. The Atchafalaya Basin, with continued sediment delivery, compared to Terrebonne Basin, with reduced river inputs, allow us to test assumptions of how coastal deltaic basins respond to river management over the last 75 years by analyzing landward migration rate of 50 % L:W isopleths between 1932 and 2010. The average landward migration for Terrebonne Basin was nearly 17,000 m (17 km) compared to only 22 m in Atchafalaya Basin over the last 78 years (p\0.001), resulting in migration rates of 218 m/year (0.22 km/year) and\0.5 m/year, respectively. In addition, freshwater vegetation expanded in Atchafalaya Basin since 1949 compared to migration of intermediate and brackish marshes landward in the Terrebonne Basin. Changes in salt marsh vegetation patterns were very distinct in these two basins with gain of 25 % in the Terrebonne Basin compared to 90 % decrease in the Atchafalaya Basin since 1949. These shifts in vegetation types as L:W ratio decreases with reduced sediment input and increase in salinity also coincide with an increase in wind fetch in Terrebonne Bay. In the upper Terrebonne Bay, where the largest landward migration of the 50 % L:W ratio isopleth occurred, we estimate that the wave power has increased by 50–100 % from 1932 to 2010, as the bathymetric and topographic conditions changed, and increase in maximum storm-surge height also increased owing to the landward migration of the L:W ratio isopleth. We argue that this balance of land relative to water in this delta provides a much clearer understanding of increased flood risk from tropical cyclones rather than just estimates of areal land loss. We describe how coastal deltaic basins of the MRDP can be used as experimental landscapes to provide insights into how varying degrees of sediment delivery to coastal deltaic floodplains change flooding risks of a sinking delta using landward migrations of 50 % L:W isopleths. The nonlinear response of migrating L:W isopleths as wind fetch increases is a critical feedback effect that should influence human river-management decisions in deltaic coast. Changes in land area alone do not capture how corresponding landscape degradation and increased water area can lead to exponential increase in flood risk to human populations in low-lying coastal regions. Reduced land formation in coastal deltaic basins (measured by changes in the land:water ratio) can contribute significantly to increasing flood risks by removing the negative feedback of wetlands on wave and storm-surge that occur during extreme weather events. Increased flood risks will promote population migration as human risks associated with living in a deltaic landscape increase, as land is submerged and coastal inundation threats rise. These system linkages in dynamic deltaic coasts define a balance of river management and human settlement dependent on a certain level of land area within coastal deltaic basins (L). 
    more » « less
  3. Abstract

    Relative sea‐level rise in the coming century will increase the risk of flooding and shoreline retreat on most major river deltas. River deltas can counteract flooding and shoreline retreat by depositing sediment on their surface. Yet, it is unclear what processes influence sedimentation and its variability on deltaic surfaces. Towards this end, we conducted a numerical modeling study in Delft3D to understand how floods, tides, and vegetation affect sedimentation rates and their spatial variability on islands in a deltaic system. Our experiments use a fully calibrated and validated hydrodynamic model of Wax Lake Delta, LA, USA. We analyzed eight numerical experiments that include a control simulation with no floods, tides, or vegetation, and seven simulations where we add in floods, tides, and vegetation. Our results clearly show that floods and tides have opposing effects. Compared to the control, floods introduce more sediment and increase the mean sedimentation rate, whereas, tides spread sediment over a larger area and decrease the mean sedimentation rate. Vegetation has a negligible effect on mean sedimentation rates but does shift sedimentation closer to the shoreline and to higher elevations. Overall, the amount of sedimentation on an island depends on its hydrological connectivity with the surrounding distributary channels. These results show that hydrologically well‐connected deltaic islands subject to tidal and riverine flooding aggrade their surfaces more evenly, which may be ideal for preventing inundation from relative sea‐level rise.

     
    more » « less
  4. Abstract

    Coastal rivers that build deltas undergo repeated avulsion events—that is, abrupt changes in river course—which we need to understand to predict land building and flood hazards in coastal landscapes. Climate change can impact water discharge, flood frequency, sediment supply, and sea level, all of which could impact avulsion location and frequency. Here we present results from quasi‐2D morphodynamic simulations of repeated delta‐lobe construction and avulsion to explore how avulsion location and frequency are affected by changes in relative sea level, sediment supply, and flood regime. Model results indicate that relative sea‐level rise drives more frequent avulsions that occur at a distance from the shoreline set by backwater hydrodynamics. Reducing the sediment supply relative to transport capacity has little impact on deltaic avulsions, because, despite incision in the upstream trunk channel, deltas can still aggrade as a result of progradation. However, increasing the sediment supply relative to transport capacity can shift avulsions upstream of the backwater zone because aggradation in the trunk channel outpaces progradation‐induced delta aggradation. Increasing frequency of overbank floods causes less frequent avulsions because floods scour the riverbed within the backwater zone, slowing net aggradation rates. Results provide a framework to assess upstream and downstream controls on avulsion patterns over glacial‐interglacial cycles, and the impact of land use and anthropogenic climate change on deltas.

     
    more » « less
  5. Abstract

    Channel bifurcations control the distribution of water and sediment in deltas, and the routing of these materials facilitates land building in coastal regions. Yet few practical methods exist to provide accurate predictions of flow partitioning at multiple bifurcations within a distributary channel network. Herein, multiple nodal relations that predict flow partitioning at individual bifurcations, utilizing various hydraulic and channel planform parameters, are tested against field data collected from the Selenga River delta, Russia. The data set includes 2.5 months of time‐continuous, synoptic measurements of water and sediment discharge partitioning covering a flood hydrograph. Results show that width, sinuosity, and bifurcation angle are the best remotely sensed, while cross‐sectional area and flow depth are the best field measured nodal relation variables to predict flow partitioning. These nodal relations are incorporated into a graph model, thus developing a generalized framework that predicts partitioning of water discharge and total, suspended, and bedload sediment discharge in deltas. Results from the model tested well against field data produced for the Wax Lake, Selenga, and Lena River deltas. When solely using remotely sensed variables, the generalized framework is especially suitable for modeling applications in large‐scale delta systems, where data and field accessibility are limited.

     
    more » « less