skip to main content


Search for: All records

Award ID contains: 1719670

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Understanding the way fluvially transported materials are partitioned in river deltas is essential for predicting their morphological change and the fate of environmental constituents and contaminants. Translating water‐based partitioning estimates into fluxes of nonwater materials is often difficult to constrain because most materials are not uniformly distributed in the water column and may have characteristic transport pathways that differ from the mean flow. Here, we present a novel reduced‐complexity modeling approach for simulating the patterns of transport of a diverse range of suspended fluvial inputs influenced by vertical stratification and topographic steering. We utilize a mixed Eulerian‐Lagrangian modeling approach to estimate the patterns of nourishment and connectivity in the Wax Lake and Atchafalaya Deltas in coastal Louisiana. Using the reduced‐complexity particle routing modeldorado, in conjunction with a calibratedANUGAhydrodynamic model, we quantify how transport patterns in each system change as a function of a material's Rouse number and environmental conditions. We find that even small changes to local topographic steering lead to emergent system‐scale changes in patterns of fluvial nourishment, with greater channel‐island connectivity for positively buoyant materials than negatively buoyant materials, hydraulically sorting different materials in space. We also find that the nourishment patterns of some materials are more sensitive than others to changes in discharge, tidal conditions, and anthropogenic dredging. Our results have important implications for understanding the eco‐geomorphic evolution of deltas, and our modeling framework could have interdisciplinary implications for studying the transport of materials in other systems, including sediments, nutrients, wood, plastics, and biotic materials.

     
    more » « less
  2. Abstract

    River deltas are home to large populations and can be composed of complex channel networks which convey flows of matter to the shoreline. Knowledge of flow within individual channels is needed to quantify the distribution of discharge across the delta, and thus its sustainability over time. Due to a lack of field measurements at the local channel scale, researchers leverage remote sensing data to estimate the partitioning of flow. We compare data from 15 river deltas to discharge partitioning estimates based on channel network graphs derived from remote sensing imagery. We quantify errors in the common width‐based method and test alternative partitioning techniques to find that width‐based discharge partitioning is universally applicable, suggesting that absent any site‐specific information, discharge partitioning by average channel width is an appropriate approach. We also provide networks, streamflow measurements, and flux partitioning estimates for 28 delta networks as the Discharge In Distributary NeTworks (DIDNT) dataset.

     
    more » « less
  3. Abstract

    Successful management of flooding and erosion hazards on floodplains depends on our ability to predict a river channel's shape and the lifespan during which it will continue to flow. Recent progress has improved our understanding of what sets the lifespan and width of single‐thread channels; the next challenge is to extend this knowledge to braided channels and their interwoven sub‐channels (threads). In this study, we investigate the lifespan and width of braided channel threads in a large experimental data set, coupled with particle‐image velocimetry‐derived measurements of riverbank erosion and accretion. We find that, unlike single‐thread channels, braided channels in the experiment do not exhibit an equilibrium between bank erosion and accretion. Instead, bank erosion outpaces lateral accretion, causing individual threads to widen and infill until they are abandoned. Thread lifespan is limited to the time it takes for threads to triple their width: tripling of the width yields enough bank material to aggrade more than half the channel depth, at which point flow is rerouted to a narrower thread. In consequence the width of active threads is limited to three times their initial width. Threshold channel theory accurately predicts the median thread width, which is roughly double the initial width and two‐thirds the limiting width. The results are consistent with existing field data and suggest that differential bank migration is sufficient to explain why braided channels show greater width variability and higher width‐to‐depth ratios than their single‐thread counterparts.

     
    more » « less
  4. Abstract

    Coastal deltaic aquifers are vulnerable to degradation from seawater intrusion, geogenic and anthropogenic contamination, and groundwater abstraction. The distribution and transport of contaminants are highly dependent on the subsurface sedimentary architecture, such as the presence of channelized features that preferentially conduct flow. Surface deposition changes in response to sea‐level rise (SLR) and sediment supply, but it remains unclear how these surface changes affect the distribution and transport of groundwater solutes in aquifers. Here, we explore the influence of SLR and sediment supply on aquifer heterogeneity and resulting effects on contaminant transport. We use realizations of subsurface heterogeneity generated by a process‐based numerical model, DeltaRCM, which simulates the evolution of a deltaic aquifer with different input sand fractions and rates of SLR. We simulate groundwater flow and solute transport through these deposits in three contamination scenarios: (a) vertical transport from widespread contamination at the land surface, (b) vertical transport from river water infiltration, and (c) lateral seawater intrusion. The simulations show that the vulnerability of deltaic aquifers to seawater intrusion correlates to sand fraction, while vertical transport of contaminants, such as widespread shallow contamination and river water infiltration, is influenced by channel stacking patterns. This analysis provides new insights into the connection between the depositional system properties and vulnerability to different modes of groundwater contamination. It also illustrates how vulnerability may vary locally within a delta due to depositional differences. Results suggest that groundwater management strategies may be improved by considering surface features, location within the delta, and the external forcings during aquifer deposition.

     
    more » « less
  5. Abstract

    Deltas exhibit spatially and temporally variable subsidence, including vertical displacement due to movement along fault planes. Faulting‐induced subsidence perturbs delta‐surface gradients, potentially causing distributary networks to shift sediment dispersal within the landscape. Sediment dispersal restricted to part of the landscape could hinder billion‐dollar investments aiming to restore delta land, making faulting‐induced subsidence a potentially significant, yet unconstrained hazard to these projects. In this study, we modeled a range of displacement events in disparate deltaic environments, and observe that a channelized connection with the displaced area determines whether a distributary network reorganizes. When this connection exists, the magnitude of distributary network reorganization is predicted by a ratio relating dimensions of faulting‐induced subsidence and channel geometry. We use this ratio to extend results to real‐world deltas and assess hazards to deltaic‐land building projects.

     
    more » « less
  6. Abstract

    Climate change is raising sea levels across the globe. On river deltas, sea‐level rise (SLR) may result in land loss, saline intrusion into groundwater aquifers, and other problems that adversely impact coastal communities. There is significant uncertainty surrounding future SLR trajectories and magnitudes, even over decadal timescales. Given this uncertainty, numerical modeling is needed to explore how different SLR projections may impact river delta evolution. In this work, we apply the pyDeltaRCM numerical model to simulate 350 years of deltaic evolution under three different SLR trajectories: steady rise, an abrupt change in SLR rate, and a gradual acceleration of SLR. For each SLR trajectory, we test a set of six final SLR magnitudes between 5 and 40 mm/yr, in addition to control runs with no SLR. We find that both surface channel dynamics as well as aspects of the subsurface change in response to higher rates of SLR, even over centennial timescales. In particular, increased channel mobility due to SLR corresponds to higher sand connectivity in the subsurface. Both the trajectory and magnitude of SLR change influence the evolution of the delta surface, which in turn modifies the structure of the subsurface. We identify correlations between surface and subsurface properties, and find that inferences of subsurface structure from the current surface configuration should be limited to time spans over which the sea level forcing is approximately steady. As a result, this work improves our ability to predict future delta evolution and subsurface connectivity as sea levels continue to rise.

     
    more » « less
  7. Abstract

    Deltaic river networks naturally reorganize as interconnected channels move to redistribute water, sediment, and nutrients across the delta plain. Network change is documented in decades of satellite imagery and laboratory experiments, but our ability to measure and understand channel movements is limited: existing methods are difficult to employ efficiently and struggle to distinguish between gradual movements (channel migration) and abrupt shifts in river course (channel avulsions). Here, we present a method to extract channel migration from plan‐view imagery using particle image velocimetry (PIV). Although originally designed to track particles moving in a fluid, PIV can be adapted to track channels moving on the delta surface, based on input estimates of channel width, migration timescale, and maps of the wet‐dry interface. Results for a delta experiment show that PIV‐derived vector fields accurately capture channel‐bank movements, as compared to manually drawn maps and an independent image‐registration technique. Unlike other methods, PIV targets the process of channel migration, excluding changes associated with channel avulsions and overbank flow. PIV‐derived migration rates from the experiment span an order of magnitude and are reduced under lower sediment supply and during sea‐level rise, supporting recent models. Together, results indicate that PIV offers a fast and reliable way to measure channel migration in river networks, that channel migration rates under non‐cohesive conditions can displace channels a distance comparable to their width in the time needed to aggrade ∼10% of the channel depth, and that migration direction is ∼60% orthogonal to mean flow direction and ∼40% flow‐parallel overall.

     
    more » « less
  8. River deltas are dynamic systems whose channels can widen, narrow, migrate, avulse, and bifurcate to form new channel networks through time. With hundreds of millions of people living on these globally ubiquitous systems, it is critically important to understand and predict how delta channel networks will evolve over time. Although much work has been done to understand drivers of channel migration on the individual channel scale, a global-scale analysis of the current state of delta morphological change has not been attempted. In this study, we present a methodology for the automatic extraction of channel migration vectors from remotely sensed imagery by combining deep learning and principles from particle image velocimetry (PIV). This methodology is implemented on 48 river delta systems to create a global dataset of decadal-scale delta channel migration. By comparing delta channel migration distributions with a variety of known external forcings, we find that global patterns of channel migration can largely be reconciled with the level of fluvial forcing acting on the delta, sediment flux magnitude, and frequency of flood events. An understanding of modern rates and patterns of channel migration in river deltas is critical for successfully predicting future changes to delta systems and for informing decision makers striving for deltaic resilience.

     
    more » « less
  9. null (Ed.)