skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2020635

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Current science indicates that warming and elevated atmospheric CO2will have ambiguous results for crop productivity depending on crop type and geographic location, whereas increased heat stress makes livestock and human labor less productive. The differential impacts across regions will alter comparative advantage and shift the patterns of global trade. This paper employs an economywide trade model to assess all three types of productivity shocks under a 3°C global warming scenario. We find that the widening agricultural trade deficits persist, even as the overall US trade balance improves due to enhanced investment inflows. 
    more » « less
    Free, publicly-accessible full text available November 28, 2026
  2. Abstract Increased warming due to climate change can induce heat stress in humans and adversely affect labour productivity due to heat-related morbidity. Here, we use a simulation model to examine the effects of heat stress, through declined labour capacity under +1.5 °C and 3.5 °C warming scenarios on agriculture and welfare across the three agroecological zones (Sudanian, Sudano-Sahelian, and Sahelian) in Burkina Faso. In the two scenarios, domestic production declines, with outdoor labour-intensive sectors such as cropping and mining being the most affected, reducing gross domestic product by 9% and 20%, respectively. All households lose welfare in all scenarios except non-poor households in the +1.5 °C scenario. Across zones, crop production declines strongest in the crop-producing Sudanian and Sudano-Sahelian zones. In contrast, relative welfare losses are strongest for households in the Sahelian zone. The study highlights the most vulnerable sectors, household groups, and zones requiring urgent attention in heat stress adaptation and mitigation policies. 
    more » « less
  3. Abstract Groundwater stress, a critical challenge for global water security and food production, has intensified due to the interaction of global change drivers and rapidly evolving local conditions. This paper investigates the individual and combined impacts of water availability, heat, population growth, income dynamics, and technological advancements on global groundwater stress over a historical period from 1997 to 2017. Utilizing the gridded Simplified International Model of agricultural Prices, Land use, and the Environment (SIMPLE-G), the study attributes local changes in water and land use patterns to these key global drivers. Furthermore, it evaluates an alternative, counterfactual scenario in which sustainable management interventions for groundwater resources are implemented over these two historical decades. The analysis quantifies the historical contribution of each global change driver to local groundwater stress and measures the economic benefits of a scenario in which groundwater extraction caps and improved technology adoption began in 1997. We find that implementing a groundwater extraction cap combined with irrigation investment beginning in 1997 could have reduced global groundwater withdrawals by more than 34% by 2017, preserving over 5 trillion cubic meters of groundwater in aquifers, with the greatest reductions occurring in South Asia and the Western United States. This study contributes to the local-global analysis of the effects of global socio-economic drivers on earth systems through high-resolution, scenario-based modeling. 
    more » « less
    Free, publicly-accessible full text available August 19, 2026
  4. ABSTRACT In a series of highly cited papers over the period of 2009–2023, earth system scientists have identified a set of nine planetary boundaries that must not be breached if we wish to avoid catastrophic consequences for nature and humanity. These range from well‐mixed, global boundaries, such as climate‐altering atmospheric greenhouse gas concentrations, to localized limits on freshwater availability and reactive nitrogen entering the environment. Recent estimates suggest that six of the nine planetary boundaries have already been breached. The food system is a key driver of these exceedances and, therefore, must play a key role in any solutions. However, the establishment of these boundaries and the analysis of potential solutions have often been devoid of economic considerations. Furthermore, in the case of several of these planetary boundaries, limited attention has been given to the economic policies that might allow society to address them, as well as the likely synergies and tradeoffs across economic policies targeted to individual objectives. This paper seeks to bring further economic analysis to bear on the quantitative assessment of global and local economic policies aimed at respecting these planetary boundaries, concluding with seven lessons to inform future research on this topic. 
    more » « less
    Free, publicly-accessible full text available March 24, 2026
  5. Abstract Compound climate hazards, such as co-occurring temperature and precipitation extremes, substantially impact people and ecosystems. Internal climate variability combines with the forced global warming response to determine both the magnitude and spatial distribution of these events, and their consequences can propagate from one country to another via many pathways. We examine how exposure to compound climate hazards in one country is transmitted internationally via agricultural trade networks by analyzing a large ensemble of climate model simulations and comprehensive trade data of four crops (i.e. wheat, maize, rice and soya). Combinations of variability-driven climate patterns and existing global agricultural trade give rise to a wide range of possible outcomes in the current climate. In the most extreme simulated year, 20% or more of the caloric supply in nearly one third of the world’s countries are exposed to compound heat and precipitation hazards. Countries with low levels of diversification, both in the number of suppliers and the regional climates of those suppliers, are more likely to import higher fractions of calories (up to 93%) that are exposed to these compound hazards. Understanding how calories exposed to climate hazards are transmitted through agricultural trade networks in the current climate can contribute to improved anticipatory capacity for national governments, international trade policy, and agricultural-sector resilience. Our results highlight the need for concerted effort toward merging cutting-edge seasonal-to-decadal climate prediction with international trade analysis in support of a new era of anticipatory Anthropocene risk management. 
    more » « less
  6. Abstract Land conservation and increased carbon uptake on land are fundamental to achieving the ambitious targets of the climate and biodiversity conventions. Yet, it remains largely unknown how such ambitions, along with an increasing demand for agricultural products, could drive landscape-scale changes and affect other key regulating nature’s contributions to people (NCP) that sustain land productivity outside conservation priority areas. By using an integrated, globally consistent modelling approach, we show that ambitious carbon-focused land restoration action and the enlargement of protected areas alone may be insufficient to reverse negative trends in landscape heterogeneity, pollination supply, and soil loss. However, we also find that these actions could be combined with dedicated interventions that support critical NCP and biodiversity conservation outside of protected areas. In particular, our models indicate that conserving at least 20% semi-natural habitat within farmed landscapes could primarily be achieved by spatially relocating cropland outside conservation priority areas, without additional carbon losses from land-use change, primary land conversion or reductions in agricultural productivity. 
    more » « less
  7. Abstract Sustainable agricultural water systems are critical to ensure prosperous agricultural production, secure water resources, and support healthy ecosystems that sustain livelihoods and well-being. Many growing regions are using water unsustainably, leading to groundwater and streamflow depletion and polluted water bodies. Often, this is driven by global consumer demands, with environmental and social impacts occurring in regions far from where the crop is ultimately consumed. This letter defines sustainable agricultural water limits, both for quantity and quality, tying them to the impacts of agricultural water use, such as impacts on ecosystems, economies, human health, and other farmers. Imposing these limits will have a range of both positive and negative impacts on agricultural production, food prices, ecosystems, and health. Pathways forward exist and are proposed based on existing studies, showing the gains that can be made from the farm to global scale to ensure sustainable water systems while sustaining agricultural production. 
    more » « less
  8. Abstract Reducing nutrient loss from agriculture to improve water quality requires a combination of management practices. However, it has been unclear what pattern of mitigation is likely to emerge from different policies, individually and combined, and the consequences for local and national land use and farm returns. We address this research gap by constructing an integrated multi-scale framework for evaluating alternative nitrogen loss management policies for corn production in the US. This approach combines site- and practice-specific agro-ecosystem processes with a grid-resolving economic model to identify locations that can be prioritized to increase the economic efficiency of the policies. We find that regional measures, albeit effective in reducing local nitrogen loss, can displace corn production to the area where nitrogen fertilizer productivity is low and nutrient loss rate is high, thereby offsetting the overall effectiveness of the nutrient management strategy. This spatial spillover effect can be suppressed by implementing the partial measures in tandem with nationwide policies. Wetland restoration combined with split fertilizer application, along with a nitrogen loss tax could reduce nitrate nitrogen loss to the Mississippi River by 30% while only increasing corn prices by less than 2%. 
    more » « less
  9. Abstract This special issue is the outcome of a workshop held at Purdue University in April 2022. It comprises thematic syntheses of five overarching dimensions of the Global-to-Local-to-Global (GLG) challenge to ensuring the long-term sustainability of land and water resources. These thematic dimensions include: climate change, ecosystems and biodiversity, governance, water resources and cyberinfrastructure. In addition, there are eight applications of GLG analysis to specific land and water sustainability challenges, ranging from environmental stress in the Amazon River Basin to groundwater depletion in the United States. Based on these papers, we conclude that, without fine-scale, local analysis, interventions focusing on land and water sustainability will likely be misguided. But formulating such policies without the broader, national/global context is also problematic – both from the point of view of the global drivers of local sustainability stresses, as well as to capture unanticipated spillovers. In addition, because local and global systems are connected to – and mediated by – meso-scale processes, accounting for key meso-scale phenomena, such as labor market functioning, is critical for characterizing GLG interactions. We also conclude that there is great scope for increasing the complexity of GLG analysis in future work. However, this carries significant risks. Increased complexity can outstrip data and modeling capabilities, slow down research, make results more difficult to understand and interpret, and complicate effective communication with decision-makers and other users of the analyses. We believe that research guidance regarding appropriate complexity is a high priority in the emerging field of Global-Local-Global analysis of sustainability. 
    more » « less
  10. Abstract Meeting the United Nation’ Sustainable Development Goals (SDGs) calls for an integrative scientific approach, combining expertise, data, models and tools across many disciplines towards addressing sustainability challenges at various spatial and temporal scales. This holistic approach, while necessary, exacerbates the big data and computational challenges already faced by researchers. Many challenges in sustainability research can be tackled by harnessing the power of advanced cyberinfrastructure (CI). The objective of this paper is to highlight the key components and technologies of CI necessary for meeting the data and computational needs of the SDG research community. An overview of the CI ecosystem in the United States is provided with a specific focus on the investments made by academic institutions, government agencies and industry at national, regional, and local levels. Despite these investments, this paper identifies barriers to the adoption of CI in sustainability research that include, but are not limited to access to support structures; recruitment, retention and nurturing of an agile workforce; and lack of local infrastructure. Relevant CI components such as data, software, computational resources, and human-centered advances are discussed to explore how to resolve the barriers. The paper highlights multiple challenges in pursuing SDGs based on the outcomes of several expert meetings. These include multi-scale integration of data and domain-specific models, availability and usability of data, uncertainty quantification, mismatch between spatiotemporal scales at which decisions are made and the information generated from scientific analysis, and scientific reproducibility. We discuss ongoing and future research for bridging CI and SDGs to address these challenges. 
    more » « less