skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Arctic Amplification of Global Warming Strengthened by Sunlight Oxidation of Permafrost Carbon to CO 2
Abstract Once thawed, up to 15% of the ∼1,000 Pg of organic carbon (C) in arctic permafrost soils may be oxidized to carbon dioxide (CO2) by 2,100, amplifying climate change. However, predictions of this amplification strength ignore the oxidation of permafrost C to CO2in surface waters (photomineralization). We characterized the wavelength dependence of permafrost dissolved organic carbon (DOC) photomineralization and demonstrate that iron catalyzes photomineralization of old DOC (4,000–6,300 a BP) derived from soil lignin and tannin. Rates of CO2production from photomineralization of permafrost DOC are twofold higher than for modern DOC. Given that model predictions of future net loss of ecosystem C from thawing permafrost do not include the loss of CO2to the atmosphere from DOC photomineralization, current predictions of an average of 208 Pg C loss by 2,299 may be too low by ~14%.  more » « less
Award ID(s):
1753731 1754835 1637459 1755125 1841092
PAR ID:
10366814
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
12
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The thawing of ancient organic carbon stored in arctic permafrost soils, and its oxidation to carbon dioxide (CO2, a greenhouse gas), is predicted to amplify global warming. However, the extent to which organic carbon in thawing permafrost soils will be released as CO2is uncertain. A critical unknown is the extent to which dissolved organic carbon (DOC) from thawing permafrost soils is respired to CO2by microbes upon export of freshly thawed DOC to both dark bottom waters and sunlit surface waters. In this study, we quantified the radiocarbon age and13C composition of CO2produced by microbial respiration of DOC that was leached from permafrost soils and either kept in the dark or exposed to ultraviolet and visible wavelengths of light. We show that permafrost DOC most labile to microbial respiration was as old or older (ages 4,000–11,000 a BP) and more13C‐depleted than the bulk DOC in both dark and light‐exposed treatments, likely indicating respiration of old,13C‐depleted lignin and lipid fractions of the permafrost DOC pool. Light exposure either increased, decreased, or had no effect on the magnitude of microbial respiration of old permafrost DOC relative to respiration in the dark, depending on both the extent of DOC oxidation during exposure to light and the wavelength of light. Together, these findings suggest that photochemical changes affecting the lability of permafrost DOC during sunlight exposure are an important control on the magnitude of microbial respiration of permafrost DOC in arctic surface waters. 
    more » « less
  2. Abstract The marine dissolved organic carbon (DOC) reservoir rivals the atmospheric carbon inventory in size. Recent work has suggested that the size of the DOC reservoir may respond to variations in sea temperature and global overturning circulation strength. Moreover, mobilization of marine DOC has been implicated in paleoclimate events including Cryogenian glaciation and Eocene hyperthermals. Despite these suggestions, the dynamics of the marine DOC reservoir are poorly understood, and previous carbon cycle modeling has generally assumed this reservoir to be static. In this study, we utilize an Earth system model of intermediate complexity to assess the response of the marine DOC reservoir to various glacial boundary conditions. Our results indicate that the marine DOC reservoir is responsive to glacial perturbations and may shrink or expand on the order of 10–100 Pg C. In contrast to recent studies that emphasize the importance of DOC degradation in driving the mobility of DOC reservoir, our study indicates the importance of DOC production. In the experiment under full glacial boundary conditions, for example, a 19% drop in net primary production leads to an 81 Pg C reduction in the DOC pool, without which the atmospheric CO2concentration would have been lower by approximately 38 ppm by dissolved inorganic carbon changes alone. Thus, DOC reservoir variability is necessary to fully account for the simulated changes in atmospheric CO2concentration. Our findings based on glacial experiments are corroborated in a different set of simulations using freshwater flux to induce weakening of the Atlantic meridional overturning circulation. 
    more » « less
  3. Abstract The magnitude of future emissions of greenhouse gases from the northern permafrost region depends crucially on the mineralization of soil organic carbon (SOC) that has accumulated over millennia in these perennially frozen soils. Many recent studies have used radiocarbon (14C) to quantify the release of this “old” SOC as CO2or CH4to the atmosphere or as dissolved and particulate organic carbon (DOC and POC) to surface waters. We compiled ~1,90014C measurements from 51 sites in the northern permafrost region to assess the vulnerability of thawing SOC in tundra, forest, peatland, lake, and river ecosystems. We found that growing season soil14C‐CO2emissions generally had a modern (post‐1950s) signature, but that well‐drained, oxic soils had increased CO2emissions derived from older sources following recent thaw. The age of CO2and CH4emitted from lakes depended primarily on the age and quantity of SOC in sediments and on the mode of emission, and indicated substantial losses of previously frozen SOC from actively expanding thermokarst lakes. Increased fluvial export of aged DOC and POC occurred from sites where permafrost thaw caused soil thermal erosion. There was limited evidence supporting release of previously frozen SOC as CO2, CH4, and DOC from thawing peatlands with anoxic soils. This synthesis thus suggests widespread but not universal release of permafrost SOC following thaw. We show that different definitions of “old” sources among studies hamper the comparison of vulnerability of permafrost SOC across ecosystems and disturbances. We also highlight opportunities for future14C studies in the permafrost region. 
    more » « less
  4. Through biological activity, marine dissolved inorganic carbon (DIC) is transformed into different types of biogenic carbon available for export to the ocean interior, including particulate organic carbon (POC), dissolved organic carbon (DOC), and particulate inorganic carbon (PIC). Each biogenic carbon pool has a different export efficiency that impacts the vertical ocean carbon gradient and drives natural air–sea carbon dioxide gas (CO2) exchange. In the Southern Ocean (SO), which presently accounts for ~40% of the anthropogenic ocean carbon sink, it is unclear how the production of each biogenic carbon pool contributes to the contemporary air–sea CO2exchange. Based on 107 independent observations of the seasonal cycle from 63 biogeochemical profiling floats, we provide the basin-scale estimate of distinct biogenic carbon pool production. We find significant meridional variability with enhanced POC production in the subantarctic and polar Antarctic sectors and enhanced DOC production in the subtropical and sea-ice-dominated sectors. PIC production peaks between 47°S and 57°S near the “great calcite belt.” Relative to an abiotic SO, organic carbon production enhances CO2uptake by 2.80 ± 0.28 Pg C y1, while PIC production diminishes CO2uptake by 0.27 ± 0.21 Pg C y1. Without organic carbon production, the SO would be a CO2source to the atmosphere. Our findings emphasize the importance of DOC and PIC production, in addition to the well-recognized role of POC production, in shaping the influence of carbon export on air–sea CO2exchange. 
    more » « less
  5. Northern peatlands have accumulated large stocks of organic carbon (C) and nitrogen (N), but their spatial distribution and vulnerability to climate warming remain uncertain. Here, we used machine-learning techniques with extensive peat core data ( n > 7,000) to create observation-based maps of northern peatland C and N stocks, and to assess their response to warming and permafrost thaw. We estimate that northern peatlands cover 3.7 ± 0.5 million km 2 and store 415 ± 150 Pg C and 10 ± 7 Pg N. Nearly half of the peatland area and peat C stocks are permafrost affected. Using modeled global warming stabilization scenarios (from 1.5 to 6 °C warming), we project that the current sink of atmospheric C (0.10 ± 0.02 Pg C⋅y −1 ) in northern peatlands will shift to a C source as 0.8 to 1.9 million km 2 of permafrost-affected peatlands thaw. The projected thaw would cause peatland greenhouse gas emissions equal to ∼1% of anthropogenic radiative forcing in this century. The main forcing is from methane emissions (0.7 to 3 Pg cumulative CH 4 -C) with smaller carbon dioxide forcing (1 to 2 Pg CO 2 -C) and minor nitrous oxide losses. We project that initial CO 2 -C losses reverse after ∼200 y, as warming strengthens peatland C-sinks. We project substantial, but highly uncertain, additional losses of peat into fluvial systems of 10 to 30 Pg C and 0.4 to 0.9 Pg N. The combined gaseous and fluvial peatland C loss estimated here adds 30 to 50% onto previous estimates of permafrost-thaw C losses, with southern permafrost regions being the most vulnerable. 
    more » « less