skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Very Low Frequency Earthquakes in Between the Seismogenic and Tremor Zones in Cascadia?
Abstract Megathrust earthquakes and their associated tsunamis cause some of the worst natural disasters. In addition to earthquakes, a wide range of slip behaviors are present at subduction zones, including slow earthquakes that span multiple orders of spatial and temporal scales. Understanding these events may shed light on the stress or strength conditions of the megathrust fault. Out of all types of slow earthquakes, very low frequency earthquakes (VLFEs) are most enigmatic because they are difficult to detect reliably, and the physical nature of VLFEs are poorly understood. Here we show three VLFEs in Cascadia that were dynamically triggered by a 2009 Mw 6.9 Canal de Ballenas earthquake in the Gulf of California. The VLFEs likely locate in between the seismogenic zone and the Cascadia episodic tremor and slip (ETS) zone, including one event with a moment magnitude of 5.7. This is the largest VLFE reported to date, causing clear geodetic signals. Our results show that the Cascadia megathrust fault might slip rapidly at some spots in this gap zone, and such a permissible slip behavior has direct seismic hazard implications for coastal communities and perhaps further inland. Further, the observed seismic sources may represent a new class of slip events, whose characteristics do not fit current understandings of slow or regular earthquakes.  more » « less
Award ID(s):
2022429 2143413
PAR ID:
10366827
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
AGU Advances
Volume:
3
Issue:
2
ISSN:
2576-604X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Megathrust geometric properties exhibit some of the strongest correlations with maximum earthquake magnitude in global surveys of large subduction zone earthquakes, but the mechanisms through which fault geometry influences subduction earthquake cycle dynamics remain unresolved. Here, we develop 39 models of sequences of earthquakes and aseismic slip (SEAS) on variably‐dipping planar and variably‐curved nonplanar megathrusts using the volumetric, high‐order accurate codetandemto account for fault curvature. We vary the dip, downdip curvature and width of the seismogenic zone to examine how slab geometry mechanically influences megathrust seismic cycles, including the size, variability, and interevent timing of earthquakes. Dip and curvature control characteristic slip styles primarily through their influence on seismogenic zone width: wider seismogenic zones allow shallowly‐dipping megathrusts to host larger earthquakes than steeply‐dipping ones. Under elevated pore pressure and less strongly velocity‐weakening friction, all modeled fault geometries host uniform periodic ruptures. In contrast, shallowly‐dipping and sharply‐curved megathrusts host multi‐period supercycles of slow‐to‐fast, small‐to‐large slip events under higher effective stresses and more strongly velocity‐weakening friction. We discuss how subduction zones' maximum earthquake magnitudes may be primarily controlled by the dip and dimensions of the seismogenic zone, while second‐order effects from structurally‐derived mechanical heterogeneity modulate the recurrence frequency and timing of these events. Our results suggest that enhanced co‐ and interseismic strength and stress variability along the megathrust, such as induced near areas of high or heterogeneous fault curvature, limits how frequently large ruptures occur and may explain curved faults' tendency to host more frequent, smaller earthquakes than flat faults. 
    more » « less
  2. Abstract Subduction zones host some of Earth's most damaging natural hazards, including megathrust earthquakes and earthquake‐induced tsunamis. A major control on the initiation and rupture characteristics of subduction megathrust earthquakes is how the coupled zone along the subduction interface accumulates elastic strain between events. We present results from observations of slow slip events (SSEs) in Cascadia occurring during the interseismic period downdip of the fully coupled zone, which imply that the orientation of strain accumulation within the coupled zone can vary with depth. Interseismic GPS motions suggest that forces derived from relative plate motions across a shallow, offshore locked plate interface dominate over decadal timescales. Deeper on the plate interface, below the locked (seismogenic) patch, slip during SSEs dominantly occurs in the updip direction, reflecting a dip‐parallel force acting on the slab, such as slab pull. This implies that in subduction zones with obliquely convergent plate motions, the seismogenic zone of the megathrust is loaded by forces acting in two discrete directions, leading to a depth‐varying orientation of strain accumulation on the plate interface. 
    more » « less
  3. Because splay faults branch at a steep dip angle from the plate-boundary décollement in an accretionary wedge, their coseismic displacement can potentially result in larger tsunamis with distinct characteristics compared to megathrust-only fault ruptures, posing an enhanced hazard to coastal communities. Elsewhere, there is evidence of coseismic slip on splay faults during many of the largest subduction zone earthquakes, but our understanding of potentially active splay faults and their hazards at the Cascadia subduction zone remains limited. To identify the most recently active splay faults at Cascadia, we conduct stratigraphic and structural interpretations of near-surface deformation in the outer accretionary wedge for the ~400 km along-strike length of the landward vergence zone. We analyze recently acquired high-frequency sparker seismic data and crustal-scale multi-channel seismic data to examine the record of deformation in shallow slope basins and the upper ~1 km of the surrounding accreted sediments and to investigate linkages to deeper décollement structure. We present a new fault map for widest, most completely locked portion of Cascadia from 45 to 48°N latitude, which documents the distribution of faults that show clear evidence of recent late Quaternary activity. We find widespread evidence for active splay faulting up to 30 km landward of the deformation front, in what we define as the active domain, and diminished fault activity landward outside of this zone. The abundance of surface-deforming splay faults in the active outer wedge domain suggests Cascadia megathrust events may commonly host distributed shallow rupture on multiple splay faults located within 30 km of the deformation front. 
    more » « less
  4. Abstract Tectonic faults fail through a spectrum of slip modes, ranging from slow aseismic creep to rapid slip during earthquakes. Understanding the seismic radiation emitted during these slip modes is key for advancing earthquake science and earthquake hazard assessment. In this work, we use laboratory friction experiments instrumented with ultrasonic sensors to document the seismic radiation properties of slow and fast laboratory earthquakes. Stick‐slip experiments were conducted at a constant loading rate of 8 μm/s and the normal stress was systematically increased from 7 to 15 MPa. We produced a full spectrum of slip modes by modulating the loading stiffness in tandem with the fault zone normal stress. Acoustic emission data were recorded continuously at 5 MHz. We demonstrate that the full continuum of slip modes radiate measurable high‐frequency energy between 100 and 500 kHz, including the slowest events that have peak fault slip rates <100 μm/s. The peak amplitude of the high‐frequency time‐domain signals scales systematically with fault slip velocity. Stable sliding experiments further support the connection between fault slip rate and high‐frequency radiation. Experiments demonstrate that the origin of the high‐frequency energy is fundamentally linked to changes in fault slip rate, shear strain, and breaking of contact junctions within the fault gouge. Our results suggest that having measurements close to the fault zone may be key for documenting seismic radiation properties and fully understanding the connection between different slip modes. 
    more » « less
  5. Abstract From California to British Columbia, the Pacific Northwest coast bears an omnipresent earthquake and tsunami hazard from the Cascadia subduction zone. Multiple lines of evidence suggests that magnitude eight and greater megathrust earthquakes have occurred ‐ the most recent being 321 years ago (i.e., 1700 A.D.). Outstanding questions for the next great megathrust event include where it will initiate, what conditions are favorable for rupture to span the convergent margin, and how much slip may be expected. We develop the first 3‐D fully dynamic rupture simulations for the Cascadia subduction zone that are driven by fault stress, strength and friction to address these questions. The initial dynamic stress drop distribution in our simulations is constrained by geodetic coupling models, with segment locations taken from geologic analyses. We document the sensitivity of nucleation location and stress drop to the final seismic moment and coseismic subsidence amplitudes. We find that the final earthquake size strongly depends on the amount of slip deficit in the central Cascadia region, which is inferred to be creeping interseismically, for a given initiation location in southern or northern Cascadia. Several simulations are also presented here that can closely approximate recorded coastal subsidence from the 1700 A.D. event without invoking localized high‐stress asperities along the down‐dip locked region of the megathrust. These results can be used to inform earthquake and tsunami hazards for not only Cascadia, but other subduction zones that have limited seismic observations but a wealth of geodetic inference. 
    more » « less