skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: What can Hydrography Tell Us About the Strength of the Nordic Seas MOC Over the Last 70 to 100 Years?
Abstract The flow of warm water into the Nordic Seas plays an important role for the mild climate of central and northern Europe. Here we estimate the stability of this flow thanks to the extensive hydrographic record that dates back to the early 1900s. Using all casts in two areas with little mean flow just south and north of the Greenland‐Scotland Ridge that bracket the two main inflow branches, we find a well‐defined approximately ±0.5 Sv volume transport (and a corresponding ±30 TW heat flux) variation in synchrony with the Atlantic multidecadal variability that peaked most recently around 2010 and is now trending down. No evidence is found for a long‐term trend in transport over the last 70 to 100 years.  more » « less
Award ID(s):
1658226
PAR ID:
10366864
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
12
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Caribbean through‐flow accounts for two‐thirds of the Florida Current and consequently is an important conduit of heat and salt fluxes in the upper limb of the Atlantic Meridional Overturning Circulation (AMOC). Considering there is evidence that up to one‐half of the Florida Current originates as South Atlantic Water (SAW), determining the distribution of SAW throughout the Caribbean Island passages is important as this constitutes the major pathway for cross‐equatorial AMOC return flow. The Anegada Passage (AP) is a major pathway for subtropical gyre inflow and suggested to be a potential SAW inflow pathway worth revisiting. Here, we present glider‐based observations of temperature, salinity and subsurface velocity that represent the first observations of any type in the AP in nearly 20 years. An isopycnal water mass analysis is conducted to quantify the transport of water masses with South Atlantic or North Atlantic origin. Two potentially new aspects of AP transport are revealed. The total AP transport (−4.8 Sv) is shown to be larger than previously estimated, potentially by up to a factor of two. The transport of SAW through the AP (−1.66 Sv) is also shown to be larger than previously estimated, which represents 35% of the total transport reported here and 28% of the SAW entering the Caribbean north of the Windward Island Passages. These results indicate the AP may be an important pathway for cross‐equatorial AMOC return flow. These results also provide evidence that gliders with acoustic doppler profilers are a viable method for measuring island passage transport. 
    more » « less
  2. Abstract Fluvial cross strata are depositional products of bedform migration that record formative flow and sediment transport conditions on planetary bodies. Bedform evolution varies with transport stage even under constant flow depths, but our understanding of how prevailing sediment transport conditions affect preserved cross strata is limited. Here, we analyzed experimental bedform evolution and preserved set thickness spanning threshold‐of‐motion to suspension‐dominated transport conditions at multiple equilibrium flow depths. Results show that bedform trough depth and mean preserved set thickness have a parabolic dependence on transport stage, with maximum values observed at intermediate transport stages. Our results indicate that transport stage is a key control on the flow‐depth‐normalized set thickness but set thickness is a poor indicator of flow depth. Thus, the dependence of bedform dimensions on transport stage should be considered in paleohydraulic reconstruction, and the analysis of set thickness may aid in the estimation of ancient fluvial sediment flux. 
    more » « less
  3. Abstract Rock dissolution is a common subsurface geochemical reaction affecting pore space properties, crucial for reservoir stimulation, carbon storage, and geothermal energy. Predictive models for dissolution remain limited due to incomplete understanding of the mechanisms involved. We examine the influence of flow, transport, and reaction regimes on mineral dissolution using 29 time‐resolved data from 3D rocks. We find that initial pore structure significantly influences the dissolution pattern, with reaction rates up to two orders of magnitude lower than batch conditions, given solute and fluid‐solid boundary constraints. Flow unevenness determines the location and rate of dissolution. We propose two models describing expected dissolution patterns and effective reaction rates based on dimensionless metrics for flow, transport, and reaction. Finally, we analyze feedback between evolving flow and pore structure to understand conditions that regulate/reinforce dissolution hotspots. Our findings underscore the major impact of flow arrangement on reaction‐front propagation and provide a foundation for controlling dissolution hotspots. 
    more » « less
  4. Abstract In this work, we investigate the collective flow development in high energy proton proton (pp) collisions with a multiphase transport model (AMPT) based on PYTHIA8 initial conditions with a sub-nucleon structure. It is found that the PYTHIA8 based AMPT model can reasonably describe both the charged hadron productions and elliptic flow experimental data measured in pp collisions at$$\sqrt{s}=13$$ s = 13 TeV. By turning on the parton and hadron rescatterings in AMPT separately, we find that the observed collective flow in pp collisions is largely developed during the parton evolution, while no significant flow effect can be generated with the pure hadronic rescatterings. It is also shown that the parton escape mechanism is important for describing both the magnitude of the two-particle cumulant and the sign of the four-particle cumulants. We emphasize that the strong mass ordering of the elliptic flow results from the coalescence process in the transport model and can thus be regarded as unique evidence related to the creation of deconfined parton matter in high energy pp collisions. 
    more » « less
  5. Abstract The Salish Sea is a large, fjordal estuarine system opening onto the northeast Pacific Ocean. It develops a strong estuarine exchange flow that draws in nutrients from the ocean and flushes the system on timescales of several months. It is difficult to apply existing dynamical theories of estuarine circulation there because of the extreme bathymetric complexity. A realistic numerical model of the system was manipulated to have stronger and weaker tides to explore the sensitivity of the exchange flow to tides. This sensitivity was explored over two timescales: annual means and the spring‐neap. Two theories for the estuarine exchange flow are: (a) “gravitational circulation” where exchange is driven by the baroclinic pressure gradient due to along‐channel salinity variation, and (b) “tidal pumping” where tidal advection combined with flow separation forces the exchange. Past observations suggested gravitational circulation was of leading importance in the Salish Sea. We find here that the exchange flow increases with stronger tides, particularly in annual averages, suggesting it is controlled by tidal pumping. However, the landward salt transport due to the exchange flow decreases with stronger tides because greater mixing decreases the salinity difference between incoming and outgoing water. These results may be characteristic of estuarine systems that have rough topography and strong tides. 
    more » « less