The behavior of permeable, elastic particles sliding along a repulsive wall is examined computationally. It is found that particles will stick or slip depending on the interplay of elastohydrodynamic and repulsive forces, and the flow in the porous particle. Particles slip when either the elastohydrodynamic lift or repulsive forces are large and create a supporting lubricating film of fluid. However, for lower values of elastohydrodynamic lift or repulsive forces, the flow within the porous particle reduces the pressure in the thin film, resulting in the particles making contact and sticking to the surface. The criteria for the slip-stick transition is presented, which can be used to design systems to promote or suppress slip for such suspensions.
more »
« less
Formation of a colloidal band via pH‐dependent electrokinetics
Abstract Electroosmosis on nonuniformly charged surfaces often gives rise to intriguing flow behaviors, which can be utilized in applications such as mixing processes and designing micromotors. Here, we demonstrate nonuniform electroosmosis induced by electrochemical reactions. Water electrolysis creates pH gradients near the electrodes that cause a spatiotemporal change in the wall zeta potential, leading to nonuniform electroosmosis. Such nonuniform EOFs induce multiple vortices, which promote the continuous accumulation of particles that subsequently form a colloidal band. The band develops vertically into a “wall” of particles that spans from the bottom to the top surface of the chamber. Such a flow‐driven colloidal band can be potentially used in colloidal self‐assembly and separation processes irrespective of the particle surface properties. For instance, we demonstrate these vortices can promote rapid segregation of soft colloids such as oil droplets and fat globules.
more »
« less
- Award ID(s):
- 2200882
- PAR ID:
- 10367050
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ELECTROPHORESIS
- Volume:
- 42
- Issue:
- 21-22
- ISSN:
- 0173-0835
- Format(s):
- Medium: X Size: p. 2356-2364
- Size(s):
- p. 2356-2364
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Diffusiophoresis refers to the movement of colloidal particles in the presence of a concentration gradient of a solute and enables directed motion of colloidal particles in geometries that are inaccessible, such as dead-end pores, without imposing an external field. Previous experimental reports on dead-end pore geometries show that, even in the absence of mean flow, colloidal particles moving through diffusiophoresis exhibit significant dispersion. Existing models of diffusiophoresis are not able to predict the dispersion and thus the comparison between the experiments and the models is largely qualitative. To address these quantitative differences between the experiments and models, we derive an effective one-dimensional equation, similar to a Taylor dispersion analysis, that accounts for the dispersion created by diffusioosmotic flow from the channel sidewalls. We derive the effective dispersion coefficient and validate our results by comparing them with direct numerical simulations. We also compare our model with experiments and obtain quantitative agreement for a wide range of colloidal particle sizes. Our analysis reveals two important conclusions. First, in the absence of mean flow, dispersion is driven by the flow created by diffusioosmotic wall slip such that spreading can be reduced by decreasing the channel wall diffusioosmotic mobility. Second, the model can explain the spreading of colloids in a dead-end pore for a wide range of particle sizes. We note that, while the analysis presented here focuses on a dead-end pore geometry with no mean flow, our theoretical framework is general and can be adapted to other geometries and other background flows.more » « less
-
Arrested coalescence occurs in Pickering emulsions where colloidal particles adsorbed on the surface of the droplets become crowded and inhibit both relaxation of the droplet shape and further coalescence. The resulting droplets have a nonuniform distribution of curvature and, depending on the initial coverage, may incorporate a region with negative Gaussian curvature around the neck that bridges the two droplets. Here, we resolve the relative influence of the curvature and the kinetic process of arrest on the microstructure of the final state. In the quasistatic case, defects are induced and distributed to screen the Gaussian curvature. Conversely, if the rate of area change per particle exceeds the diffusion constant of the particles, the evolving surface induces local solidification reminiscent of jamming fronts observed in other colloidal systems. In this regime, the final structure is shown to be strongly affected by the compressive history just prior to arrest, which can be predicted from the extrinsic geometry of the sequence of surfaces in contrast to the intrinsic geometry that governs the static regime.more » « less
-
null (Ed.)Active colloidal fluids, biological and synthetic, often demonstrate complex self-organization and the emergence of collective behavior. Spontaneous formation of multiple vortices has been recently observed in a variety of active matter systems, however, the generation and tunability of the active vortices not controlled by geometrical confinement remain challenging. Here, we exploit the persistence length of individual particles in ensembles of active rollers to tune the formation of vortices and to orchestrate their characteristic sizes. We use two systems and employ two different approaches exploiting shape anisotropy or polarization memory of individual units for control of the persistence length. We characterize the dynamics of emergent multi-vortex states and reveal a direct link between the behavior of the persistence length and properties of the emergent vortices. We further demonstrate common features between the two systems including anti-ferromagnetic ordering of the neighboring vortices and active turbulent behavior with a characteristic energy cascade in the particles velocity field energy spectra. Our findings provide insights into the onset of spatiotemporal coherence in active roller systems and suggest a control knob for manipulation of dynamic self-assembly in active colloidal ensembles.more » « less
-
Supervised learning for accurate mesoscale simulations of suspension flow in wall-bounded geometriesHerein, we have employed a supervised learning approach combined with Core-Modified Dissipative Particle Dynamics Simulations (CM-DPD) in order to develop and design a reliable physics-based computational model that will be used in studying confined flow of suspensions. CM-DPD was recently developed and has shown promising performance in capturing rheological behavior of colloidal suspensions; however, the model becomes problematic when the flow of the material is confined between two walls. Wall-penetration by the particles is an unphysical phenomenon that occurs in coarse-grained simulations such as Dissipative Particle Dynamics (DPD) that mostly rely on soft inter-particle interactions. Different solutions to this problem have been proposed in the literature; however, no reports have been given on how to deal with walls using CM-DPD. Due to complexity of interactions and system parameters, designing a realistic simulation model is not a trivial task. Therefore, in this work we have trained a Random Forest (RF) for predicting wall penetration as we vary input parameters such as interaction potentials, flow rate, volume fraction of colloidal particles, and confinement ratio. The RF predictions were compared against simulation tests, and a sufficiently high accuracy and low errors were obtained. This study shows the viability and potentiality of ML combined with DPD to perform parametric studies in complex fluids.more » « less
An official website of the United States government
