Abstract In order to improve the quality of products during additive manufacturing, we developed a novel freezing sublimation-based method for inkjet-based three-dimensional (3D) printing technology, which can significantly improve the uniformity of material distribution in printed products. In our previous studies, we used a laboratory prototype with single droplets of inkjet solution containing colloidal particles to prove the concept of this study. However, understanding the interaction between droplets on the printing substrate surface is also crucial for determining the printing resolution and accuracy of this method, which cannot be fully investigated through single droplet-based experimental studies. To fill this knowledge gap, we conducted a series of experiments on colloidal droplet impingement, freezing, and sublimation on substrates using dual droplets. The experimental setup allowed the release of two droplets in quick succession from a modified nozzle with two needles. These droplets coalesced on the substrate surface due to spreading during their impingement processes. Observations revealed that the coalescence pattern of these two droplets varied depending on the time interval between their release. When the second droplet was released immediately after the first, their coalescence was governed by fluid dynamics. However, when the second droplet was released after the first droplet had frozen on the substrate, it spread above the ice surface of the first droplet in a relatively slower process. This observation provides new insights for the continued study and optimization of the proposed novel freezing sublimation-based 3D printing method. 
                        more » 
                        « less   
                    
                            
                            Geometry and kinetics determine the microstructure in arrested coalescence of Pickering emulsion droplets
                        
                    
    
            Arrested coalescence occurs in Pickering emulsions where colloidal particles adsorbed on the surface of the droplets become crowded and inhibit both relaxation of the droplet shape and further coalescence. The resulting droplets have a nonuniform distribution of curvature and, depending on the initial coverage, may incorporate a region with negative Gaussian curvature around the neck that bridges the two droplets. Here, we resolve the relative influence of the curvature and the kinetic process of arrest on the microstructure of the final state. In the quasistatic case, defects are induced and distributed to screen the Gaussian curvature. Conversely, if the rate of area change per particle exceeds the diffusion constant of the particles, the evolving surface induces local solidification reminiscent of jamming fronts observed in other colloidal systems. In this regime, the final structure is shown to be strongly affected by the compressive history just prior to arrest, which can be predicted from the extrinsic geometry of the sequence of surfaces in contrast to the intrinsic geometry that governs the static regime. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1654283
- PAR ID:
- 10144139
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 15
- Issue:
- 46
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 9587 to 9596
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Arrested, or partial, coalescence of viscoelastic emulsion droplets can occur when elastic resistance to deformation offsets droplet surface area minimization. Arrest is a critical element of food and consumer product microstructure and performance, but direct studies of structural arrest and rearrangement have been carried out using only two or three droplets at a time. The question remains whether the behavior of small numbers of droplets also occurs in larger, more realistic many-droplet systems. Here we study two-dimensional aggregation and arrested coalescence of emulsions containing ∼1000 droplets and find that the restructuring mechanisms observed for smaller systems have a large effect on local packing in multidroplet aggregates, but surprisingly do not significantly alter overall mass scaling in the aggregates. Specifically, increased regions of hexagonal packing are observed as the droplet solids level, and thus elasticity, is decreased because greater degrees of capillary force-driven restructuring are possible. Diffusion-limited droplet aggregation simulations that account for the restructuring mechanisms agree with the experimental results and suggest a basis for prediction of larger-scale network properties and bulk emulsion behavior.more » « less
- 
            We studied the evaporation-induced formation of supraparticles from dispersions of elongated colloidal particles using experiments and computer simulations. Aqueous droplets containing a dispersion of ellipsoidal and spherical polystyrene particles were dried on superamphiphobic surfaces at different humidity values that led to varying evaporation rates. Supraparticles made from only ellipsoidal particles showed short-range lateral ordering at the supraparticle surface and random orientations in the interior regardless of the evaporation rate. Particle-based simulations corroborated the experimental observations in the evaporation-limited regime and showed an increase in the local nematic ordering as the diffusion-limited regime was reached. A thin shell of ellipsoids was observed at the surface when supraparticles were made from binary mixtures of ellipsoids and spheres. Image analysis revealed that the supraparticle porosity increased with an increasing aspect ratio of the ellipsoids.more » « less
- 
            Organizing the colloidal particles into 3D superstructures is a promising strategy for fabricating functional metamaterials with novel optical, electric, and catalytic properties. The rich surface properties of the colloidal particles provide many ways to manipulate their assembly behavior. Emulsion droplets are ideal microspaces for confining colloidal self-assembly, offering many advantages such as versatility, scalability, and controllability over size, shape, and composition. In this review, we first introduce recently developed strategies for the emulsion-confined assembly of colloidal particles into 3D superstructures by manipulating the interfacial properties of the emulsion droplets and colloidal particles, then demonstrate the novel collective properties of the assembled superstructures and highlight some of their unique optical and catalytic properties and applications in bioimaging, diagnosis, drug delivery, and therapy.more » « less
- 
            Exploring the role of hydrodynamic interactions in spherically confined drying colloidal suspensionsWe study the distribution of colloidal particles confined in drying spherical freestanding droplets using both dynamic density functional theory (DDFT) and particle-based simulations. In particular, we focus on the advection-dominated regime typical of aqueous droplets drying at room temperature and systematically investigate the role of hydrodynamic interactions (HIs) during this nonequilibrium process. In general, drying produces transient particle concentration gradients within the droplet in this regime, with a considerable accumulation of particles at the droplet’s liquid–vapor interface. We find that these gradients become significantly larger with pairwise HIs between colloidal particles instead of a free-draining hydrodynamic approximation; however, the solvent’s boundary conditions at the droplet’s interface (unbounded, slip, or no-slip) do not have a significant effect on the particle distribution. DDFT calculations leveraging the radial symmetry of the drying droplet are in excellent agreement with particle-based simulations for free-draining hydrodynamics, but DDFT unexpectedly fails for pairwise HIs after the particle concentration increases during drying, manifesting as an ejection of particles from the droplet. We hypothesize that this unphysical behavior originates from an inaccurate approximation of the two-body density correlations based on the bulk pair correlation function, which we support by measuring the confined equilibrium two-body density correlations using particle-based simulations. We identify some potential strategies for addressing this issue in DDFT.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    