Abstract Low‐temperature thermochronometric data can reveal the long‐term evolution of erosion, uplift, and thrusting in fold‐thrust belts. We present results from central Idaho and southwestern Montana, where the close spatial overlap of the Sevier fold‐thrust belt and Laramide style, basement‐involved foreland uplifts signify a complex region with an unresolved, long‐term tectono‐thermal history. Inverse QTQt thermal history modeling of new zircon (U‐Th)/He (ZHe,n = 106), and apatite (U‐Th)/He dates (AHe,n = 43) collected from hanging walls of major thrusts systems along a central Idaho to southwestern Montana transect, and apatite fission track results from 6 basement samples, reveal regional thermal and spatial trends related to Sevier and Laramide orogenesis. Inverse modeling of foreland basement uplift samples suggest Phanerozoic exhumation initiated as early as ∼80 Ma and continued through the early Paleogene. Inverse modeling of interior Idaho fold‐thrust belt ZHe samples documents Early Cretaceous cooling at ∼125 Ma in the Lost River Range (western transect), and a younger cooling episode in the Lemhi Arch region (mid‐transect) at ∼90–80 Ma through the late Paleogene. This cooling in the Lemhi Arch temporally overlaps with cooling in southwestern Montana's basement‐cored uplifts, which we interpret as roughly synchronous exhumation related to contractional tectonics and post‐orogenic collapse. These data and models, integrated with independent timing constraints from foreland basin strata and previously published thermochronometric results, suggests that middle Cretaceous deformation of southwestern Montana's basement‐cored uplifts was low magnitude and preceded tectonism along the classic Arizona‐Wyoming Laramide “corridor.” In contrast, Late Cretaceous and Paleogene thrust‐related exhumation was more significant and largely complete by the Eocene. The basement‐involved deformation was contemporaneous with and younger than along‐strike Sevier belt thrusting in central Idaho.
more »
« less
Proterozoic to Phanerozoic Tectonism in Southwestern Montana Basement Ranges Constrained by Low Temperature Thermochronometric Data
Abstract Crystalline basement rocks of southwestern Montana have been subjected to multiple tectonothermal events since ∼3.3 Ga: the Paleoproterozoic Big Sky/Great Falls orogeny, Mesoproterozoic extension associated with Belt‐Purcell basin formation, Neoproterozoic extension related to Rodinia rifting, and the late Phanerozoic Sevier‐Laramide orogeny. We investigated the long‐term (>1 Ga), low‐temperature (erosion/burial within 10 km of the surface) thermal histories of these tectonic events with zircon and apatite (U‐Th)/He thermochronology. Data were collected across nine sample localities (n = 55 zircon andn = 26 apatite aliquots) in the northern and southern Madison ranges, the Blacktail‐Snowcrest arch, and the Tobacco Root uplift. Our zircon (U‐Th)/He data show negative trends between single aliquot date and effective uranium (a radiation damage proxy), which we interpreted with a thermal history model that considers the damage‐He diffusivity relationship in zircon. Our model results for these basement ranges show substantial cooling from temperatures above 400°C to near surface conditions between 800 and 510 Ma. Subsequent Phanerozoic exhumation culminated by ∼75 Ma. Late Phanerozoic cooling is coincident with along‐strike Sevier belt thin‐skinned thrusting in southeastern Idaho, and older than exhumation in basement‐involved uplifts of the Wyoming Laramide province. Our long‐term, low‐temperature thermal record for these southwestern Montana basement ranges shows that: (a) these basement blocks have experienced multiple episodes of upper crustal exhumation and burial since Archean time, possibly influencing Phanerozoic thrust architecture and (b) the late Phanerozoic thick‐skinned thrusting recorded by these rocks is among the earliest thermochronologic records of Laramide basement‐involved shortening and was concomitant with Sevier belt thin‐skinned thrusting.
more »
« less
- PAR ID:
- 10367064
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Tectonics
- Volume:
- 40
- Issue:
- 11
- ISSN:
- 0278-7407
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Archean rocks exposed in the Beartooth Mountains, Montana and Wyoming, have experienced a complex >2.5 Gyr thermal history related to the long‐term geodynamic evolution of Laurentia. We constrain this history using “deep‐time” thermochronology, reporting zircon U‐Pb, biotite40Ar/39Ar, and zircon and apatite [U‐Th(‐Sm)]/He results from three transects across the basement‐core of the range. Our central transect yielded a zircon U‐Pb concordia age of 2,805.6 ± 6.4 Ma. Biotite40Ar/39Ar plateau ages from western samples are ≤1,775 ± 27 Ma, while those from samples further east are ≥2,263 ± 76 Ma. Zircon (U‐Th)/He dates span 686.4 ± 11.9 to 13.5 ± 0.3 Ma and show a negative relationship with effective uranium—a proxy for radiation damage. Apatite (U‐Th)/He dates are 109.2 ± 23.9 to 43.6 ± 1.9 Ma and correlate with sample elevation. Multi‐chronometer Bayesian time‐temperature inversions suggest: (a) Cooling between ∼1.90 and ∼1.80 Ga, likely related to Big Sky orogeny thermal effects; (b) Reheating between ∼1.80 Ga and ∼1.35 Ga consistent with Mesoproterozoic burial; (c) Cooling to ≤100°C between Mesoproterozoic and early Paleozoic time, likely reflecting continental erosion; (d) Variable Paleozoic–Jurassic cooling, possibly related to Paleozoic tectonism and/or low eustatic sea level; (e) Rapid Cretaceous–Paleocene cooling, preceding accepted proxies for flat‐slab subduction; (f) Eocene–Miocene reheating consistent with reburial by Cenozoic volcanics and/or sediments; (g) Post‐20 Ma cooling consistent with Neogene development of topographic relief. Our results emphasize the utility of multi‐chronometer thermochronology in recovering complex, non‐monotonic multi‐billion‐year thermal histories.more » « less
-
Western North America is the archetypical Cordilleran orogenic system that preserves a Mesozoic to Cenozoic record of oceanic Farallon plate subduction-related processes. After prolonged Late Jurassic through mid-Cretaceous normal-angle Farallon plate subduction that produced the western North American batholith belt and retroarc fold-thrust belt, a period of low-angle, flat-slab subduction during Late Cretaceous−Paleogene time caused upper plate deformation to migrate eastward in the form of the Laramide basement-involved uplifts, which partitioned the original regional foreland basin. Major questions persist about the mechanism and timing of flat-slab subduction, the trajectory of the flat-slab, inter-plate coupling mechanism(s), and the upper-plate deformational response to such processes. Critical for testing various flat-slab hypotheses are the timing, rate, and distribution of exhumation experienced by the Laramide uplifts as recorded by low-temperature thermochronology. In this contribution, we address the timing of regional exhumation of the Laramide uplifts by combining apatite fission-track (AFT) and (U-Th-Sm)/He (AHe) data from 29 new samples with 564 previously published AFT, AHe, and zircon (U-Th)/He ages from Laramide structures in Arizona, Utah, Wyoming, Colorado, Montana, and South Dakota, USA. We integrate our results with existing geological constraints and with new regional cross sections to reconstruct the spatial and temporal history of exhumation driven by Laramide deformation from the mid-Cretaceous to Paleogene. Our analysis suggests a two-stage exhumation of the Laramide province, with an early phase of localized exhumation occurring at ca. 100−80 Ma in Wyoming and Montana, followed by a more regional period of exhumation at ca. 70−50 Ma. Generally, the onset of enhanced exhumation occurs earlier in the northern Laramide province (ca. 90 Ma) and later in the southern Laramide province (ca. 80 Ma). Thermal history models of selected samples along regional cross sections through Utah−Arizona−New Mexico and Wyoming−South Dakota show that exhumation occurred contemporaneously with deformation, implying that Laramide basement block exhumation is coupled with regional deformation. These results have implications for testing proposed migration pathway models of Farallon flat-slab and for how upper-plate deformation is expressed in flat-slab subduction zones in general.more » « less
-
Abstract Recent advances in low‐temperature thermochronology enable the recovery of deep‐time thermal histories from Precambrian crystalline rocks shaped by multiple tectonic events, offering unprecedented opportunities to test tectonic hypotheses and links to significant biologic and climatic episodes. In particular, the late Neoproterozoic breakup of supercontinent Rodinia profoundly shaped the western margin of Laurentia, leaving a geologic record along the Cordilleran hingeline that temporally associates continental rifting with biological change at the Ediacaran‐Cambrian transition and may explain the unusual eastern extent of the Laramide orogeny. However, sedimentary evidence east of the Cordilleran hingeline is lacking, leaving postulated links untested. Here we interpret Neoproterozoic to recent tectonic histories from the Colorado Front Range using thermal history modeling of zircon (U‐Th)/He (ZHe) ages (50–607 Ma), which vary with grain U‐Th composition. These models are constrained by geologic records that place basement rocks near Earth's surface at ca. 700, 500, and 300 Ma, and they resolve late Neoproterozoic heating to 240–285°C followed by cooling. Sensitivity tests confirm this heating signal depends on fitting Mesoproterozoic40Ar/39Ar ages and a ZHe data set that includes high‐U‐Th grains with reproducible 61 ± 7.5 Ma ages that correspond to Colorado Mineral Belt magmatism and Laramide exhumation. We interpret the Neoproterozoic heating as direct evidence that intracontinental rifting in the Front Range region drove kilometer‐scale burial coeval with global glaciation and the fragmentation of Rodinia. The magnitude and duration of reheating are well constrained, but resolving subsequent cooling during Neoproterozoic‐Paleozoic time strongly depends on surface constraints from the geologic record.more » « less
-
The Great Valley Forearc basin of California preserves >15 km of strata deposited during latest Jurassic-earliest Cretaceous to Eocene sedimentation. Along the western margin of the central-northern Great Valley forearc, the oldest basin strata are preserved as an eastward dipping homoclinal belt. Previous work on the thermal history of the western outcrop belt has constrained sub-normal geothermal gradients (<20C/km) during middle Cretaceous to Eocene time related to subduction refrigeration. However, the timing of maximum burial and subsequent exhumation is restricted to a few local studies. This study applies apatite and zircon (U-Th)/He and apatite fission track thermochronology to quantify maximum burial temperatures and the timing and rate of cooling of latest Jurassic-middle Cretaceous strata of the western homocline and neighboring subsurface along 350 km of the basin margin. Zircon (U-Th)/He dates range from ~167 to 85 Ma, which are either older or bracket corresponding depositional ages. Apatite fission track dates range from ~162 to 90 Ma, with the majority of grains between ~110-90 Ma. All apatite (U-Th)/He dates are less than 50 Ma, with most grains yielding dates between ~40-20 Ma. Preliminary integration of these data into thermal history models indicate that maximum burial temperatures did not exceed 120-180 C. The timing of basin cooling ranges based on locality, with the western outcrop yielding rapid exhumation starting between ~100-65 Ma and subsurface cooling at ~50 Ma. Final cooling to modern temperatures, as constrained by apatite (U-Th)/He dates, generally coincides with the transition to a transform margin after ~30 Ma.more » « less
An official website of the United States government
